基于马氏距离判别的自适应图像融合方法和系统

    公开(公告)号:CN108460724B

    公开(公告)日:2021-10-22

    申请号:CN201810114537.9

    申请日:2018-02-05

    Abstract: 本发明涉及一种基于马氏距离判别的自适应图像融合方法和系统,在融合过程中将目标图像分为三部分,重合区域最左边完全取自img1中的数据,右边的部分完全取自img2经变换后的图像,通过对各个相机的重叠区域部分评估择优,自动选择规划出合适的各镜头成像点集,使得融合的图像更为真实,细节更加突出,极大地减小了因为细节丢失而导致的系统检测误差。本发明将马氏距离判别分析的方法引入图像融合技术之中,可以有效克服重叠区域坐标内各像素间的噪声干扰,自动选择规划出合适的各相机成像点集,以此评估出的像素点集合成后的图像整体平滑度更好,同时对真实场景的还原度高,极大的提升了图像融合的准确率。

    基于马氏距离判别的自适应图像融合方法和系统

    公开(公告)号:CN108460724A

    公开(公告)日:2018-08-28

    申请号:CN201810114537.9

    申请日:2018-02-05

    Abstract: 本发明涉及一种基于马氏距离判别的自适应图像融合方法和系统,在融合过程中将目标图像分为三部分,重合区域最左边完全取自img1中的数据,右边的部分完全取自img2经变换后的图像,通过对各个相机的重叠区域部分评估择优,自动选择规划出合适的各镜头成像点集,使得融合的图像更为真实,细节更加突出,极大地减小了因为细节丢失而导致的系统检测误差。本发明将马氏距离判别分析的方法引入图像融合技术之中,可以有效克服重叠区域坐标内各像素间的噪声干扰,自动选择规划出合适的各相机成像点集,以此评估出的像素点集合成后的图像整体平滑度更好,同时对真实场景的还原度高,极大的提升了图像融合的准确率。

    一种图像分类识别的方法

    公开(公告)号:CN108537277A

    公开(公告)日:2018-09-14

    申请号:CN201810316101.8

    申请日:2018-04-10

    Abstract: 本发明公开了一种图像分类识别的方法,首先读取本地图片;然后生成批次,并打乱样本数据;接着构造图像分类识别模型;训练参数,直到图像分类识别模型到达稳定;最后保存图像分类识别模型,用来做相关图像识别。本发明通过结合LeNet、AlexNet、GoogleNet等传统算法有效的解决了识别准确率低,过拟合等问题。在图像识别,分类上有明显的改善,而且相对于层数较多、模型复杂的算法GoogleNet、R-CNN等更加容易实现,在实际应用中更实用,稍加改变可以实现各种图像的分类识别。

Patent Agency Ranking