-
公开(公告)号:CN118861956A
公开(公告)日:2024-10-29
申请号:CN202411345345.0
申请日:2024-09-26
申请人: 烟台大学
IPC分类号: G06F18/2433 , G06F18/213 , G06F18/241 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/088
摘要: 本发明涉及数据处理技术领域,尤其是涉及一种基于图神经网络的电力系统数据异常检测方法及系统。方法,包括获取电力系统数据;根据获取的电力系统数据,生成图结构;利用图卷积神经网络对图结构的节点特征进行初步特征提取,得到特征序列;使用基于异常注意机制的编码器从特征序列中进一步提取特征,得到注意力分数;使用基于多头注意力机制的解码器重构编码器提取的特征,并计算重构误差;根据重构误差计算异常得分,基于异常得分判断是否存在异常。本发明通过引入基于图结构的深度学习技术,结合图卷积神经网络和异常注意机制,有效提升了电力系统中异常检测的精度和效率。
-
公开(公告)号:CN118713938A
公开(公告)日:2024-09-27
申请号:CN202411203462.3
申请日:2024-08-30
申请人: 烟台大学
IPC分类号: H04L9/40 , G06F18/2433 , G06F18/25
摘要: 本发明涉及异常节点检测技术领域,尤其是涉及一种基于异质图的工业互联网异常节点检测方法及系统。所述方法包括:对新的图结构进行不同类型节点的特征映射;基于自注意力机制对新的图结构进行计算得到节点嵌入向量;基于语义级的注意力机制学习元路径的重要性,通过融合节点嵌入向量得到最终的融合嵌入向量;对节点的融合嵌入向量进行分类,以检测工业互联网中的异常节点。在本发明中,将工业互联网看作异质图神经网络,引入机器学习和图神经网络框架,结合利用图结构学习算法、图注意力网络、元路径等一系列技术,实现对工业互联网中的异常节点进行准确、高效识别和监控。
-