基于多维奖励Q学习的模型预测加权因子动态调整方法

    公开(公告)号:CN115167134B

    公开(公告)日:2024-10-25

    申请号:CN202210846015.4

    申请日:2022-07-19

    Applicant: 燕山大学

    Abstract: 本发明涉及一种基于多维奖励Q学习的模型预测加权因子动态调整方法,属于自动驾驶车辆轨迹跟踪控制领域。解决了采用模型预测控制原理设计轨迹跟踪控制器时对加权因子的选取不当会降低自动驾驶车辆轨迹跟踪稳定性和精确性以及行驶安全性的问题。本发明通过强化学习中Q学习方法,训练了加权因子最优调整策略,可实时动态调整模型预测轨迹跟踪控制器的加权因子,从而实时优化自动驾驶车辆的轨迹跟踪性能,以减少在每个采样时刻下车辆实际位置与预期轨迹之间的误差,提高自动驾驶车辆的轨迹跟踪精度和行驶稳定性、舒适性。

    在线实时的智能网联车网络攻击威胁分析与风险评估方法

    公开(公告)号:CN118900203A

    公开(公告)日:2024-11-05

    申请号:CN202411249998.9

    申请日:2024-09-06

    Applicant: 燕山大学

    Abstract: 本发明公开了一种在线实时的智能网联车网络攻击威胁分析与风险评估方法。该方法包括:获取威胁场景信息、损害场景信息以及攻击路径信息;以所述威胁场景信息、所述损害场景信息以及所述攻击路径信息作为输入,利用经训练的损害场景评估模型和攻击可行性评估模型,获得各损害场景的影响等级和攻击可行性等级;利用所述各损害场景的影响等级和所述攻击可行性等级,结合设定的风险矩阵计算获得智能网联车的风险等级。本发明能够有效识别系统当前受到的攻击威胁并且进行在线实时的风险评估,对于智能网联车自动驾驶技术的发展具有重要意义。

    一种考虑多维度驾驶人特性的制动反应时间预测方法

    公开(公告)号:CN113657676B

    公开(公告)日:2024-05-14

    申请号:CN202110953850.3

    申请日:2021-08-19

    Applicant: 燕山大学

    Abstract: 本发明涉及一种考虑多维度驾驶人特性的制动反应时间预测方法,包括建立制动反应时间的影响因素解构模型、发放调查问卷、基于调查问卷建立结构方程SEM模型、设计驾驶负荷试验方案、采集制动反应时间数据、建立基于BP神经网络的制动反应时间预测模型、对制动反应时间预测模型进行性能检验等步骤,本发明使用结构方程模型全面地解构驾驶人制动反应时间的影响因素,借助试验采集有效制动反应时间数据和驾驶人特性指标,从人因角度深入分析各个因素的影响机制和参与方式,建立考虑多维度驾驶人特性的制动反应时间预测模型,为开发基于行车风险预测的先进驾驶人辅助系统提供支持。

    基于强化学习的增强高铁自动驾驶控制系统准时性的方法

    公开(公告)号:CN116859731A

    公开(公告)日:2023-10-10

    申请号:CN202310804271.1

    申请日:2023-07-03

    Abstract: 本发明提供一种基于强化学习的增强高铁自动驾驶控制系统准时性的方法,通过建立基本数据模块和列车运行仿真模块,设置奖励函数和额外单步奖励,设计神经网络结构,构建高速列车自动驾驶训练模型;确定训练参数执行训练,得到高速列车自动驾驶控制模型;本发明改进列车准时性奖励函数的设置方式,在保留原有全局奖励方法的基础上,设置一个在一轮训练过程中的每个单步中都能给予智能体准时性反馈的额外奖励函数,使奖励函数的引导性更强,解决准时性稀疏奖励难以获得的问题,提高列车自动驾驶控制系统的训练效率,更好地满足自动驾驶列车运行过程中的准时性要求。

Patent Agency Ranking