-
公开(公告)号:CN118568596A
公开(公告)日:2024-08-30
申请号:CN202410767745.4
申请日:2024-06-14
申请人: 电子科技大学 , 电子科技大学重庆微电子产业技术研究院
IPC分类号: G06F18/2415 , G06F18/25 , G06F18/213 , G06N3/0464 , G06N3/0495 , G06N3/0985
摘要: 本发明属于轨道超偏载检测预警领域,具体为一种基于轻量化网络的超偏载检测方法。本发明在铁轨的每个测区内安装4个剪力传感器和4个压力传感器,通过融合每个测区内8个传感器采集的数据,按照上、下轨道分别融合数据,并将融合的数据传入设计的轻量型神经网络结构训练超参模型,进而提取火车车厢的车轴特征、转向架特征,并组成车厢特征,以计算每个车厢的超偏载结果。本发明中轻量型神经网络的运用可以有效降低误检、漏检等风险,提升了车轴特征的检测的正确性;并提供了车轴特征的去重步骤进一步提升精度;基于此,车厢的检测正确性也将得到极大的提升,最终达到提高火车超偏载检测的精度,降低货运火车因超偏载带来的风险。
-
公开(公告)号:CN117611810A
公开(公告)日:2024-02-27
申请号:CN202311457394.9
申请日:2023-11-03
申请人: 桂林电子科技大学
摘要: 本发明涉及图像分割技术领域,具体涉及一种基于Segformer的轻量化道路图像分割方法,针对Segformer模型存在的问题,基于交叉特征融合网络进行改进,在第一层中引入语义特征融合模块(semantic‑feature fusion,SFF),在第二层中采用坐标注意力模块(coordinate attention,CA),第三层中采用门控注意力机制模块(gated‑attention mechanism,GAM),第四层中使用利用SENet模块重新校准特征映射,最后输送到语义分割解码器预测图像中各个像素的语义类别,本发明在不同情况下的语义特征融合分别采用了SFF和GAM模块,使分割效果更连续,更细化,同时采用了两种注意力模块CA和SENet,帮助模型精准地定位和识别感兴趣的目标,以少量的参数量和计算量保证高效且精准的图像分割,提高了自动驾驶时的实时性。
-
公开(公告)号:CN116883341A
公开(公告)日:2023-10-13
申请号:CN202310802870.X
申请日:2023-07-03
申请人: 桂林电子科技大学
摘要: 本发明涉及数字医疗技术领域,具体涉及一种基于深度学习的肝脏肿瘤CT图像自动分割方法,包括如下步骤:提取待分割CT图像;利用多尺度特征识别网络,提取所述待分割CT图像的多尺度特征;利用注意力机制网络,通过所述多尺度特征识别所述待分割CT图像中的病变区域;根据识别结果,在所述待分割CT图像中分割出肝脏肿瘤图像。本发明首先基于深度学习技术,解决了传统方法存在的手动标注、分割精度和效率低下等问题,同时相较于现有技术,本发明具有更高的自动化程度、更精准的分割结果和更高的分割效率。
-
-