-
公开(公告)号:CN115010385B
公开(公告)日:2023-12-12
申请号:CN202210779854.9
申请日:2022-07-04
申请人: 郑州航空工业管理学院
摘要: 本发明属于硅酸盐水泥熟料生产技术领域,具体涉及一种SiC增强硅酸盐水泥熟料及其快速制备方法。制备方法包括以下步骤:S1、称取原料碳酸钙、二氧化硅、碳粉装入容器中,然后加入水后采用湿式球磨方式均匀混合,获得混合粉体;S2、将S1得到的混合粉体预压制坯后,采用微波烧结得到SiC增强硅酸盐水泥熟料。本发明提供了一种微波快速制备SiC增强硅酸盐水泥熟料的方法,该方法有效降低了传统制备硅酸盐水泥方法的合成时间和温度,并且SiC粉体的存在有效提高了水泥水化硬度。
-
公开(公告)号:CN114736010B
公开(公告)日:2023-05-23
申请号:CN202210345982.2
申请日:2022-04-02
申请人: 郑州航空工业管理学院
IPC分类号: C04B35/26 , C04B35/622 , C04B35/64 , H05K9/00
摘要: 本发明属于电磁波吸收材料技术领域,具体涉及一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用。分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)O/Fe2O4,具有两种晶型:岩盐型和尖晶石型。制备步骤如下:(1)、选取FeO、CoO、NiO、CuO、ZnO作为原料,称取FeO、CoO、NiO、CuO、ZnO粉体的摩尔比为1∶1∶1∶1∶1,混合均匀,获得混合粉体;(2)、将步骤(1)制备好的混合粉体压制成圆片生坯,空气气氛下控温在1200‑1300℃煅烧10‑12h,取出煅烧产物即得高熵氧化物陶瓷。本发明以氧化亚铁、氧化钴、氧化镍、氧化铜、氧化锌为原料,进行煅烧,获得高纯度、强吸波性能、宽吸收频带的高熵氧化物陶瓷,经分析表明制备得到的高熵氧化物陶瓷的最小反射损耗值为‑52.3dB。
-
公开(公告)号:CN115925392A
公开(公告)日:2023-04-07
申请号:CN202211592285.3
申请日:2022-12-13
申请人: 郑州航空工业管理学院
IPC分类号: C04B35/04 , C04B35/46 , C04B35/45 , C04B35/453 , C04B35/01 , C04B35/626
摘要: 本发明涉及高熵陶瓷技术领域,提供了一种过渡金属高熵陶瓷氧化物复合材料粉体及其制备方法。本发明将MgO粉体、TiO2粉体、NiO粉体、CuO粉体和ZnO粉体混合,然后将所得混合粉体进行微波烧结,得到过渡金属高熵陶瓷氧化物复合材料粉体。本发明通过微波烧结合成(MgTiNiCuZn)O高熵陶瓷,操作方法简单,烧结时间短,且不会产生污染,符合国家节能环保的政策方针,具有广阔的应用前景;并且本发明制备的(MgTiNiCuZn)O高熵陶瓷氧化物复合材料粉体属于一种全新的材料,丰富了高熵陶瓷氧化物的材料体系,为高熵陶瓷的研究提供了新的方向。
-
公开(公告)号:CN113186416B
公开(公告)日:2022-06-14
申请号:CN202010037815.2
申请日:2020-01-14
申请人: 郑州航空工业管理学院
摘要: 本发明属于陶瓷增强金属基复合材料技术领域,具体涉及一种SiC增强铜基复合材料及其制备方法。本发明的SiC增强铜基复合材料,包括Cu颗粒和SiC颗粒,所述Cu颗粒和SiC颗粒之间设有非晶玻璃相,所述非晶玻璃相为SiO2和Cu2O的共熔物。本发明通过向SiC颗粒与Cu颗粒之间引入非晶玻璃相作为界面过渡层,避免了SiC颗粒与Cu颗粒的直接接触,从而使得SiC增强铜基复合材料的性能得到提高。
-
公开(公告)号:CN110666157A
公开(公告)日:2020-01-10
申请号:CN201910920899.1
申请日:2019-09-27
申请人: 郑州航空工业管理学院
摘要: 本发明属于电磁波吸收材料技术领域,公开一种核壳结构C@CoNi复合材料及其制备方法和应用。所述复合材料是由若干个CoNi合金颗粒均匀包裹在碳球周围而形成的核壳结构,并且CoNi合金颗粒呈花状结构。制备方法:将葡萄糖、十六烷基三甲基溴化铵加入水中,搅拌均匀,将所得溶液控温在180~200℃静置水热反应12~15 h,水热反应结束后,取出其中的沉淀物,清洗、干燥,获得前驱体碳球;将碳球、水溶性钴盐、水溶性镍盐、水合肼分散于水中,搅拌均匀,将所得溶液控温在160~180℃静置水热反应15~18 h,水热反应结束后,取出其中的沉淀物,清洗、干燥,获得核壳结构C@CoNi复合材料。制备的核壳结构的C@CoNi复合材料具有很好的电磁波吸收特性。
-
公开(公告)号:CN108190883A
公开(公告)日:2018-06-22
申请号:CN201810195584.0
申请日:2018-03-09
申请人: 郑州航空工业管理学院 , 郑州华晶金刚石股份有限公司
IPC分类号: C01B32/28
摘要: 本发明涉及一种人造金刚石的提纯方法,属于人工合成金刚石后处理技术领域。本发明的人造金刚石的提纯方法,包括以下步骤:1)将人造金刚石粉体进行微波加热处理60~120min,得预处理的人造金刚石粉体;2)将预处理的人造金刚石粉体进行磁选处理,得到金刚石颗粒;3)将步骤2)分离出的金刚石颗粒与表面活化剂混合后进行微波处理。步骤1)中微波加热处理为多模谐振模式双频率处理。本发明的人造金刚石的提纯方法相比于传统的人造金刚石提纯方法,该方法工艺简单,操作方便,加热温度低,时间短,工作环境得到极大改善,彻底解决了现有人造金刚石提纯过程中的环境污染问题,适合大规模工业化应用,具有非常广阔的应用前景。
-
公开(公告)号:CN114736010A
公开(公告)日:2022-07-12
申请号:CN202210345982.2
申请日:2022-04-02
申请人: 郑州航空工业管理学院
IPC分类号: C04B35/26 , C04B35/622 , C04B35/64 , H05K9/00
摘要: 本发明属于电磁波吸收材料技术领域,具体涉及一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用。分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)O/Fe2O4,具有两种晶型:岩盐型和尖晶石型。制备步骤如下:(1)、选取FeO、CoO、NiO、CuO、ZnO作为原料,称取FeO、CoO、NiO、CuO、ZnO粉体的摩尔比为1∶1∶1∶1∶1,混合均匀,获得混合粉体;(2)、将步骤(1)制备好的混合粉体压制成圆片生坯,空气气氛下控温在1200‑1300℃煅烧10‑12h,取出煅烧产物即得高熵氧化物陶瓷。本发明以氧化亚铁、氧化钴、氧化镍、氧化铜、氧化锌为原料,进行煅烧,获得高纯度、强吸波性能、宽吸收频带的高熵氧化物陶瓷,经分析表明制备得到的高熵氧化物陶瓷的最小反射损耗值为‑52.3dB。
-
公开(公告)号:CN113930634A
公开(公告)日:2022-01-14
申请号:CN202111108563.9
申请日:2021-09-22
申请人: 郑州航空工业管理学院
IPC分类号: C22C1/05 , C22C9/00 , B22F3/14 , C22C32/00 , C01G3/02 , C01B32/956 , C01B33/158
摘要: 本发明属于金属基复合材料技术领域,公开一种Cu/SiO2‑Cu2O/SiC金属基复合材料及其制备方法,所述制备方法包括在SiC粉体表面包覆SiO2‑Cu2O复合物,制得SiC/SiO2‑Cu2O复合气凝胶,随后向所述复合气凝胶中加入Cu粉,混合均匀后将其于800~950℃温度下进行热压烧结,即获得金属基复合材料;其中,所述Cu粉体与所述SiC/SiO2‑Cu2O复合气凝胶的体积比为1:0.01~0.2。本发明采用SiO2‑Cu2O作为Cu与SiC界面过渡相,通过调控界面结构减小SiC与Cu润湿角,改善界面结合状态、力学性能及电学性能;且本发明的Cu/SiO2‑Cu2O/SiC金属基复合材料硬度最高达到1.4GPa;0~200℃电导率不随测试温度改变而变化,200~400℃电导率随测试温度的增加而缓慢增加,400~900℃电导率随测试温度的增加而急剧增加。
-
公开(公告)号:CN113754440A
公开(公告)日:2021-12-07
申请号:CN202111271983.9
申请日:2021-10-29
申请人: 郑州航空工业管理学院
IPC分类号: C04B35/565 , C04B35/571 , C04B35/622 , C04B35/645
摘要: 本发明属于高温结构陶瓷技术领域,提供了一种SiC陶瓷材料及其制备方法,其制备方法包括如下步骤:S1、将粒径不同的SiC颗粒进行不同的质量比例混合,然后加入聚碳硅烷,混合均匀后,得混合粉体;S2、将S1得到混合粉体装入模具中,对混合粉体预压后,采用振荡热压烧结,冷却得到SiC陶瓷材料。本发明采用不同粒径的SiC颗粒,按照不同比例进行颗粒级配,加入聚碳硅烷,在不添加烧结助剂条件下,通过振荡热压技术进行烧结以获得高致密度、高性能的无烧结助剂SiC陶瓷。
-
公开(公告)号:CN102531014B
公开(公告)日:2014-02-12
申请号:CN201110436458.8
申请日:2011-12-23
申请人: 郑州航空工业管理学院
摘要: 本发明属于无机非金属材料制备工艺技术领域,公开了一种α-Al2O3粉体的混合微波烧结法。将前驱体粉料置于辅助加热保温装置中,辅助加热保温装置与前驱体粉料一同放入微波谐振腔内进行烧结:首先,开启微波源,调节微波输入功率,以平均6~30℃/min的速度缓慢升温;待脱水结束后,开始连续调节微波输入功率,以20~100℃/min的速度迅速加热,同时监测反射功率;待反射功率稳定时,维持升温速率在10~30℃/min匀速升温至烧结温度1000~1500℃,保温2~20min,控制微波输入功率以6~30℃/min的速度匀速冷却至室温,即得α-Al2O3粉体制品。本发明根据氧化物的吸波特性,将传统烧结与微波烧结结合,实现了α-Al2O3粉体的快速烧结,该方法成本低、无污染、方便快捷,适宜α-Al2O3粉体的规模化生产。
-
-
-
-
-
-
-
-
-