基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329B

    公开(公告)日:2025-01-10

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

    基于深度学习和探地雷达的道路地下空洞检测预警方法

    公开(公告)号:CN113009447A

    公开(公告)日:2021-06-22

    申请号:CN202110245588.7

    申请日:2021-03-05

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于深度学习和探地雷达的道路地下空洞检测预警方法,该方法包括:通过探地雷达采集实际道路的含噪探地雷达回波信号;对含噪探地雷达回波信号进行滤波平滑处理得到去噪探地雷达回波信号;采用生成式对抗神经网络对去噪探地雷达回波信号进行增广处理得到雷达回波信号;采用快速区域卷积神经网络对雷达回波信号进行检测得到第一检测预警结果。本发明采用GANs网络对地下坑洞数据集进行增广,解决了基于深度学习的地下空洞检测时训练样本不足的问题,同时采用快速区域卷积神经网络模型进行检测,提高了网络对信号特征的学习能力,实现了将深度学习技术更好地应用到雷达信号检测技术中,可以更加准确而快速地对道路进行无损检测。

    基于峰值聚类高速公路收费数据异常事件检测方法及装置

    公开(公告)号:CN112364910A

    公开(公告)日:2021-02-12

    申请号:CN202011225553.9

    申请日:2020-11-05

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于峰值聚类高速公路收费数据异常事件检测方法及装置,用以解决现有技术中的高速公路异常事件检测方法及装置存在的检测结果不准确、效率不高等问题;本发明提供的基于高速公路收费数据的异常事件检测方法及装置,可以更加全面准确感知高速公路交通运行状况,能够有效挖掘出数据中隐藏的道路拥堵、长时停留、车辆超速、设备故障、系统故障、网络故障、车辆超载和疑似逃费等异常事件。

    基于视频流的路面裂缝动态检测方法

    公开(公告)号:CN107610092B

    公开(公告)日:2020-04-07

    申请号:CN201710648354.0

    申请日:2017-08-01

    Applicant: 长安大学

    Abstract: 本发明公开了基于视频流的路面裂缝动态检测方法,包括以下步骤:步骤1,将道路路面的裂缝区域用一矩形框框在其中,利用车载运动相机采集含裂缝区域的道路路面视频,提取任一帧视频作为视频图像,对视频图像进行灰度化处理,得到灰度图像;步骤2,对灰度图像进行二值化处理,得到二值化图像;步骤4,对二值化图像中的裂缝区域进行区域生长算法处理,得到处理后的裂缝区域;骤5,将处理后的裂缝区域进行校正,得到校正后的裂缝区域;步骤6,计算校正后的裂缝区域中裂缝的面积。本发明克服了人工检测方法具有的劳动强度大、安全性低、行车受干扰、工作效率低和检测精确度较低的缺点。

    基于椭球立体表征的裂缝三维检测方法

    公开(公告)号:CN107610094B

    公开(公告)日:2020-04-03

    申请号:CN201710653515.5

    申请日:2017-08-02

    Applicant: 长安大学

    Abstract: 基于椭球立体表征的裂缝三维检测方法。本发明公开了基于视频流的路面裂缝动态检测方法,包括以下步骤:步骤1,读取路面三维图像数据矩阵;步骤2,对路面三维图像数据矩阵进行预处理,得到预处理后三维图像数据;步骤3,对预处理后的三维图像数据矩阵进行滤波处理,得到去噪后的三维图像数据矩阵;步骤4:提取去噪后的三维图像数据矩阵的每行数据,提取出完整的路面裂缝;步骤5,将路面裂缝划分为多个裂缝区域,求取每个附加深度的椭圆模型的表征参数;步骤6,根据表征参数对所有附加深度的椭圆模型进行聚类,得到聚类后的裂缝;步骤7,计算聚类后的裂缝的裂缝特征值,将裂缝分为网状裂缝和线性裂缝。本发明降低了计算量,复杂度,对细节信息丢失、虚假深度裂缝等原因造成的裂缝段,能够准确还原为完整裂缝。

    一种路用粗集料棱角性量化方法

    公开(公告)号:CN109116002A

    公开(公告)日:2019-01-01

    申请号:CN201810667800.7

    申请日:2018-06-26

    Applicant: 长安大学

    Abstract: 本发明公开了一种路用粗集料棱角性量化方法,包括输入集料棱角性检测系统得到的集料图像,集料图像灰度化等一系列处理,读取集料图像,采用M结构元素进行形态学集料骨架提取,得到集料边缘棱角的全部信息;初始化各个变量,形态学运算获取集料颗粒骨架图像;读取集料颗粒骨架图像,形态学闭运算进行集料骨架图像像素连接操作,并求骨架图像的大小利用形态学操作移除目标边界像素,组成图像的骨架,将集料骨架图像二值化,对每幅集料骨架图像棱角点数求和;以平均棱角点表征单个集料的棱角性,用平均棱角点和面积权值共同量化整批集料的棱角性。可实现对集料棱角性高效,精确的检测和定量分析,具有检测效率高,客观性强,检测成本低的优点。

    一种基于双尺度聚类算法的路面裂缝识别算法及系统

    公开(公告)号:CN104636750B

    公开(公告)日:2018-09-21

    申请号:CN201410787530.5

    申请日:2014-12-17

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于双尺度聚类的路面裂缝识别算法及系统:计算机读取三维图像数据矩阵,得到二值化图像;按照从上到下、从左到右的顺序,采用八邻域搜索算法扫描二值化图像对应的数据矩阵,得到标记后的裂缝区域;在裂缝区域对应的椭圆,使用双尺度聚类算法进行裂缝聚类得到聚类后的裂缝区域;使用聚类后的裂缝区域所在的最小外接椭圆作为路面裂缝。本发明复杂度低、运行时间短、无需人工参与。将杂乱的裂缝数据局域使用线性拟合、模型构建的思想表征成为规则的、确定的数学表达式,从而降低的数据处理的复杂度;只需输入采集到的路面裂缝数据即可完成路面裂缝的检测,因此该算法检测效率高、速度快,具有一定的研究价值。

    基于视频流的路面裂缝动态检测方法

    公开(公告)号:CN107610092A

    公开(公告)日:2018-01-19

    申请号:CN201710648354.0

    申请日:2017-08-01

    Applicant: 长安大学

    Abstract: 本发明公开了基于视频流的路面裂缝动态检测方法,包括以下步骤:步骤1,将道路路面的裂缝区域用一矩形框框在其中,利用车载运动相机采集含裂缝区域的道路路面视频,提取任一帧视频作为视频图像,对视频图像进行灰度化处理,得到灰度图像;步骤2,对灰度图像进行二值化处理,得到二值化图像;步骤4,对二值化图像中的裂缝区域进行区域生长算法处理,得到处理后的裂缝区域;骤5,将处理后的裂缝区域进行校正,得到校正后的裂缝区域;步骤6,计算校正后的裂缝区域中裂缝的面积。本发明克服了人工检测方法具有的劳动强度大、安全性低、行车受干扰、工作效率低和检测精确度较低的缺点。

Patent Agency Ranking