Abstract:
The present invention relates to a liquid composition comprising A) an organic active ingredient which is sparingly water-soluble and sparingly oil-soluble, in dissolved form, B) an oil which is soluble in water at 20° C. to at most 20 g/l, and C) an ionic liquid comprising a cation and an anion as described below. Also provided is a process for the preparation of the liquid composition, where the active ingredient, the oil and the ionic liquid are brought into contact; and also the use of the ionic liquid for increasing the solubility of the active ingredient in an oil.
Abstract:
The present invention relates to a liquid composition comprising A) an organic active ingredient which is sparingly water-soluble and sparingly oil-soluble, in dissolved form, B) an oil which is soluble in water at 20° C. to at most 20 g/l, and C) an ionic liquid comprising a cation and an anion as described below. Also provided is a process for the preparation of the liquid composition, where the active ingredient, the oil and the ionic liquid are brought into contact; and also the use of the ionic liquid for increasing the solubility of the active ingredient in an oil.
Abstract:
The present invention is directed to nanofiltration (NF) composite membranes comprising at least one polymeric porous substrate layer (S) and at least one porous selfassembled supramolecular membrane layer (F); a method of preparing such composite membranes; method of separation/filtration/purification of heavy metal cations, inorganic anions, and organic small molecules by applying such composite membranes; as well as filter cartridges and filtration devices comprising said composite membranes.
Abstract:
The present invention relates to a micropowder, wherein the particles of the micropowder have a Dv10 value of at least 2 micrometer and the micropowder comprises mesopores which have an average pore diameter in the range of from 2 to 50 nm and comprise, based on the weight of the micropowder, at least 95 weight-% of a microporous aluminum-free zeolitic material of structure type MWW containing titanium and zinc.
Abstract:
A process for the post-treatment of a zeolitic material having a BEA framework structure, the process comprising (i) providing a zeolitic material having a BEA framework structure, wherein the framework structure of the zeolitic material comprises X2O3 and YO2, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X2O3:YO2 is greater than 0.02:1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X2O3:YO2 of at most 0.02:1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75° C.
Abstract:
A process for the post-treatment of a zeolitic material having a BEA framework structure, the process comprising (i) providing a zeolitic material having a BEA framework structure, wherein the framework structure of the zeolitic material comprises X2O3 and YO2, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X2O3:YO2 is greater than 0.02:1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X2O3:YO2 of at most 0.02:1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75° C.
Abstract:
A process for the post-treatment of a zeolitic material having an MWW framework structure, the process comprising (i) providing a zeolitic material having an MWW framework structure, wherein the framework structure of the zeolitic material comprises X 2 O 3 and YO 2 , wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X 2 O 3 : YO 2 is greater than 0.02 : 1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X 2 O 3 : YO 2 of at most 0.02 : 1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75 °C.
Abstract translation:一种用于后处理具有MWW骨架结构的沸石材料的方法,所述方法包括(i)提供具有MWW骨架结构的沸石材料,其中所述沸石材料的骨架结构包含X 2 O 3和YO 2,其中 Y是四价元素,X是三价元素,并且其中X 2 O 3 :YO 2的摩尔比大于0.02:1; (ii)用液体溶剂体系处理(i)中提供的沸石材料,由此获得具有至多0.02:1的摩尔比X 2 O 3 :YO 2的沸石材料,并且至少部分地将沸石材料与液体分离 溶剂体系; (iii)用具有5.5至8范围内的pH和至少75℃的温度的液体含水体系处理由(ii)获得的沸石材料。