Abstract:
The present invention relates to a process for the preparation of a zeolitic material having a CHA-type framework structure comprising YO2 and X2O3, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more sources for X2O3, one or more tetraalkylammonium cation R1R2R3R4N+-containing compounds, and one or more tetraalkylammonium cation R5R6R7R8N+-containing compounds as structure directing agent; (2) crystallizing the mixture obtained in step (1) for obtaining a zeolitic material having a CHA-type framework structure; wherein Y is a tetravalent element and X is a trivalent element, wherein R1, R2, R3, R4, R5, R6, and R7 independently from one another stand for alkyl, and wherein R8 stands for cycloalkyl, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
Abstract:
A process for preparing a tin-containing zeolitic material having framework type BEA, comprising providing an aqueous synthesis mixture comprising a boron source, a silicon source, and a BEA structure directing agent; subjecting the synthesis mixture provided in to hydrothermal pre-crystallization conditions; adding the tin source to the obtained mixture; subjecting the obtained aqueous synthesis mixture to hydrothermal crystallization conditions, obtaining a tin-containing zeolitic material having framework type BEA comprised in its mother liquor.
Abstract:
A process for preparing 2,6-dimethyl-5-heptenal, comprising oxidizing citral of which more than 50% are present as geranial with hydrogen peroxide in the presence of a catalyst comprising a Baeyer-Villiger oxidation catalyst, preferably a tin-containing molecular sieve.
Abstract:
A process for the preparation of a zeolitic material having an MWW framework structure and comprising boron and titanium, the process comprising (i) providing an aqueous synthesis mixture comprising a silica source, a boron source, a titanium source, and an MWW templating agent; (ii) heating the aqueous synthesis mixture to a temperature in the range of from 160 to 190° C.; (iii) subjecting the synthesis mixture (ii) to hydrothermal synthesis conditions, obtaining, in its mother liquor, a precursor of the zeolitic material; (iv) separating the precursor from its mother liquor; (v) calcining the separated precursor, obtaining the zeolitic material having an MWW framework structure and comprising boron and titanium.
Abstract:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
Abstract translation:本发明涉及一种生产具有包含YO 2和B 2 O 3的MWW骨架结构的含硼沸石材料的方法,其中Y代表四价元素,其中所述方法包括(a)提供包含一种或多种来源的混合物 对于YO2,一种或多种B 2 O 3,一种或多种有机模板和晶种的来源,(b)使(a)中获得的混合物结晶以获得含硼MWW型沸石材料的层状前体,(c)煅烧 (b)中获得的用于获得具有MWW骨架结构的含硼沸石材料的层状前体,其中所述一种或多种有机模板具有式(I)R1R2R3N(Ⅰ),其中R1是(C5-C8)环烷基,其中 R2和R3彼此独立地为H或烷基,以及根据本发明方法可获得和/或获得的合成含硼沸石以及其用途。
Abstract:
A process for filling a sorption store (50) with a gas (51), wherein at least one gas adsorbent medium (60) is disposed within at least one vessel, comprising a last step (26) wherein a last portion of an entire amount of the gas (51) to be filled into the sorption store (50) is fed at a maximum feed rate, said feed rate defined as an amount of gas (51) filled into the sorption store (50) per time unit, and wherein the last portion of the entire amount of the gas (51) to be filled into the sorption store (51) is the difference between at least 20% and 100%, in particular the difference between at least 40% and 100%, by weight of gas relating to the total weight of gas to be stored.