摘要:
To provide a hold-type display device without a problem of motion blur and a driving method thereof. The length of a period for displaying a blanking image in one frame period is controlled in accordance with a control parameter showing the degree of motion blur, and the level of a signal supplied to a display element is changed in accordance with the length of the period for displaying the blanking image. Accordingly, the hold-type display device without a problem of motion blur and the driving method thereof can be provided.
摘要:
An active matrix LED display device uses optical feedback for controlling the pixel drive transistors (2). The LED display elements are controlled to provide a pulsed output, and the optical feedback element (66,68) is controlled cyclically such that, for constant illumination of the optical feedback element (66,68) during a cycle, there is a substantially zero net output charge flow. This arrangement uses pulsed light output, and arranges the optical feedback to operate only in response to a corresponding pulsed light input. In this way, ambient light, which will be uniform over the time period of the cycle of operation, will not influence the optical feedback system. In this way, the system is not influenced by ambient light conditions.
摘要:
A control circuit for a MEMS (Micro-Electro-Mechanical System) has a semiconductor switch which has a source, a drain and a gate, which is associated with a selected one of spatially arranged fixed and movable plates of a variable capacitor, and is arranged to selectively connect the selected one of the fixed and movable plates with a voltage source. A charge injection control circuit is associated with the semiconductor switch and attenuates current injection into the selected one of the fixed and movable plates of the capacitor.
摘要:
A display LED drive circuit is configured as follows. For example, a constant current circuit, a green display LED circuit, and a red display LED circuit are connected in series and a resistor circuit having a resistor causing a potential difference identical to each of the display LED is connected in parallel to each of the LED circuits. A corresponding switching element of the display LED circuit and a corresponding switching element of the resistor circuit connected in parallel are controlled to be opened and closed in opposite ways. Another route connected to a source circuit in parallel is connected to a constant current circuit, a blue display LED circuit, and a constant voltage diode in series. The blue display LED circuit is connected in parallel to a resistor circuit as has been described above. A predetermined voltage is taken out from the output terminal by the constant voltage diode and supplied to a control circuit. Thus, it is possible to reduce the number of constant current circuits, current consumption, and the cost, thereby improving the power source use efficiency.
摘要:
The pixels of an active matrix display device have a current-driven light emitting display element, a drive transistor for driving a current through the display element, a storage capacitor for storing a pixel drive voltage to be used for addressing the drive transistor, a light-dependent device for detecting the brightness of the display element, and driver circuitry for providing data signals to the pixel external to the pixel array. This provides a pixel with optical feedback to compensate for display element ageing. The driver circuitry has a processing means for processing the feedback brightness signals and derives from them a threshold voltage for the drive transistor of the pixel as well as information relating to the performance of the display element, for ageing compensation.
摘要:
A matrix display device comprises an array of addressable pixels (10) each having a display element (20) and a control circuit for controlling the operation of the display element. The control circuit includes a charge storage capacitor (36) and a photosensitive device (40) coupled to the storage capacitor for regulating charge stored on the storage capacitor (36) in accordance with light falling on the photosensitive device (40). The control circuit further comprises means for independent voltage control (42) of a gate terminal of the photosensitive device (40), preferably a phototransistor. In this way a more efficient and flexible biasing of the phototransistor is possible. The means preferably comprise a second row line (42) being connected to the gate terminal of the photosensitive device (40). This additional line allows also the use of transistors of the same polarity for this type of pixel circuit, saving additional process masks (and costs). In addition, it becomes possible to use the phototransistor as a TFT switch. This dual function (phototransistor/TFT switch) enables the pixel circuit to provide additional features; for example duty-cycle techniques for motion blur compensation.
摘要:
In an active matrix electroluminescent display device, a storage capacitor (24) is provided for storing a voltage to be used for addressing a drive transistor (22). A discharge photodiode (27) is provided for discharging the storage capacitor in dependence on the light output of the display element, and an input data voltage applied to the pixel is changed by an amount corresponding to the threshold voltage of the drive transistor. The changed data voltage is applied between the gate and source of the drive transistor. In this device the initial voltage on the gate of the drive transistor is modified so as to remove the dependency of the light output on the threshold voltage, so that threshold voltage variations can be tolerated.
摘要:
An active matrix electroluminescent display device in which the drive current through an electroluminescent display element (20) in each pixel (10) in a drive period is controlled by a driving device (22) based on a drive signal applied during a preceding address period and stored as a voltage on an associated storage capacitor (36). In order to counteract the effects of display element ageing, through which the light output for a given drive signal level diminishes over time, the pixel includes electro-optic discharging means (38) coupled to the storage capacitor and responsive to the display element's light output to leak stored charge and to control the integrated light output of the display element in the drive period. For improved control, the discharging means is arranged to rapidly discharge the capacitor at a controlled point in the drive period, upon the drive of the display element falling to a low level. A photoresponsive transistor can conveniently be utilised for this purpose.
摘要:
A method and apparatus for driving a plurality of addressable elements consist of driving and selectively enabling one or more addressable elements arranged as an MxN array using two drivers. A first and a second driver are used to drive first and second signals at slightly different frequencies on a first and a second display conductor. A plurality of pixels, coupled between the first and second display conductors, is addressed according to a pixel location in which the first signal is approximately in phase with the second signal. The pixel scan rate is proportional to the difference between the first and second signal frequencies. The first and second conductors may contain a plurality of delay elements and tap-off points. Conducting lines may be terminated by their characteristic impedance to prevent any reflection of the traveling signals. The matrix display pixels are selectively enabled by modulating an amplitude of the first signal and/or an amplitude of the second signal when the selected pixel location(s) is addressed so that the voltage differential between the first and second signals is sufficient to enable the addressed pixel.