Abstract:
Provided is a single-crystalline Co x Ge 1-x nanowire having x of at least 0.01 to less than 0.99, a germanium cobalt nanowire structure having a vertical alignment to the substrate and provided in the cathode of the electric field display and a method of fabricating them using the gas-phase transfer method. By providing the nanowire which uses the graphene or the highly ordered pyrolytic graphite as the substrate and has a vertical alignment to the substrate and uniform size and high density, it is possible to use the germanium cobalt nanowire as a field emission emitter and uses the substrate having the germanium cobalt nanowire formed as a cathode transparent electrode of the field emission display.
Abstract:
A transmitter device (110T) for secure communication includes: an encoder (170) configured to apply a non-systematic error correcting code (NS ECC) to a message, thus producing encoded bits with no clear message bits; and a transceiver (720) configured to transmit the encoded bits over a main channel to a receiver. A method for secure communication includes: encoding a message with an NS ECC to produce an encoded message carrying no message bits in the clear; and transmitting the encoded message over a main channel (120). The NS ECC characteristics result in an eavesdropper channel error probability under a security threshold (320) and a main channel error probability over a reliability threshold (310), whenever an eavesdropper (140) listening on an eavesdropper channel (150) is more than distance Z (220) from the transmitter. Unreliable bits in the encoded bits render the eavesdropper unable to reliably decode messages on the main channel.
Abstract:
A crane spreader for use in lifting a container includes an attachment unit (120), a head block (100), a frame unit (110), a position adjustment unit (130) and a fixation unit (140). The attachment unit detachably attaches the crane spreader to an upper surface of the container. The head block has a pulley connected to a trolley of a crane through a cable and coupled to the attachment unit to restrict a horizontal movement the attachment unit with respect to the head block. The frame unit is supported by the head block to be horizontally movable with respect to the head block, the frame unit being disposed below the head block with a gap therebetween. The position adjustment unit aligns the frame unit with the container by displacing the frame unit with respect to the attachment unit. The fixation unit engages the container with the frame unit.
Abstract:
An apparatus and a method for allocating IDcells in a wireless communication system are provided, in which an initial IDcell allocation is performed by allocating entire sectors to elements of an NxM IDcell matrix, a sector pair with the highest proximity is selected for each IDcell in the initial allocation, an IDcell with a sector pair having the highest of the proximities of the selected sector pairs is determined as a target IDcell, one sector of the sector pair with the highest proximity for the target IDcell is selected as a target sector, a predetermined number of sectors are selected for each of the other IDcells except for the target IDcell, from among sectors to which the each of the other IDcells is allocated, and the IDcell of the target sector is swapped with the IDcell of a sector satisfying a first condition among the selected sectors.
Abstract:
The present invention relates to a method of increasing the expression of a target protein by co-expression of a gene encoding a target protein having a high content of a specific amino acid with a nucleotide sequence encoding the tRNA of the specific amino acid. According to the present invention, the expression of a protein having a high content of a specific amino acid can be remarkably increased by co-expression with the tRNA of the specific amino acid. Thus, the present invention is useful for increasing the productivity of a protein having a high content of a specific amino acid, such as a repetitive protein.
Abstract:
Disclosed is a high resolution image obtaining apparatus and method. The high resolution image obtaining apparatus may divide an input image frame into a background region and foreground region and apply an optimized resolution enhancement algorithm to each region, thereby effectively obtaining a high resolution image frame with respect to the input image frame.
Abstract:
An apparatus and a method for frame interpolation based on precision motion estimation are provided. The apparatus for frame interpolation may generate an interpolation frame to restore images based on a motion vector which is determined after a motion vector is determined based on a rotation element in addition to forward motion and backward motion between frames.
Abstract:
Provided is a method of preparing polylactate (PLA) or a copolymer thereof using a mutant microorganism in which a gene participating in a coenzyme A (CoA) donor- and lactate-producing pathway is genetically manipulated to increase the productivity of a CoA donor and lactate. Amounts of the CoA donor and the lactate are simultaneously increased in a microbial metabolic pathway to enable effective biosynthesis of PLA and a hydroxyalkanoate-lactate copolymer having a high content of lactate, which is industrially useful.
Abstract:
The present invention relates to a method for manufacturing a field emitter electrode, in which nanowires are aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field. More particularly, the present invention relates to a method for manufacturing a field emitter electrode having nanowires aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field, the method comprising the steps of diluting nanowires in a solvent, dispersing the resulting solution on a substrate fixed to the upper part of an electromagnetic field generator, and fixing the nanowires aligned in the direction of an electromagnetic field generated from the electromagnetic field generator. According to the present invention, a high capacity field emitter electrode having high density nanowires aligned according to the direction of a generated electromagnetic field can be fabricated by a simple process and nanowires can be used as positive electrode materials for field emission displays (FEDs), sensors, electrodes, backlights and the like.