Abstract:
The invention relates to a softener composition containing at least one tetrahydrofurane derivative and at least one 1,2-cyclohexane dicarboxylic acid ester, moulding compounds which contain a thermoplastic polymer or an elastomer and said type of softener composition, and to the use of said softener compositions and moulding compounds.
Abstract:
The present invention relates to tetrahydrofuran derivatives, a plasticizer composition containing said tetrahydrofuran derivatives, molding materials containing a thermoplastic polymer and such a tetrahydrofuran derivative, to a process for the production of these tetrahydrofuran derivatives and their use.
Abstract:
A process for preparing 5-hydroxymethylfurfural (HMF), characterized in that a) solutions (called starting solution hereinafter) comprising a hexose and an organic solvent having a boiling point greater than 200°C (at standard pressure) (called high boilers for short) and steam are supplied to a reaction vessel, b) a conversion of the hexose to HMF in the presence of steam with simultaneous distillative removal of the HMF is effected in the reaction vessel and c) the distillate obtained is an aqueous, HMF-containing solution (called distillate hereinafter).
Abstract:
A process for preparing 5-hydroxymethylfurfural (HMF), characterized in that a) solutions (called starting solution hereinafter) comprising one or more saccharides and an organic solvent having a boiling point greater than 200°C (at standard pressure) (called high boiler for short) and water and a solvent having a boiling point greater than 60°C and less than 200°C (at standard pressure, called low boiler for short) are supplied to a reaction vessel, b) a conversion of the hexose to HMF in the presence of steam with simultaneous distillative removal of the HMF is effected in the reaction vessel and c) the distillate obtained is an aqueous, HMF containing solution (called distillate hereinafter).
Abstract:
A process for preparing furan-2,5-dicarboxylic acid is disclosed. The process includes the following steps: preparing or providing a starting mixture including 5-(hydroxy-methyl)furfural (HMF), 5,5′-[oxy-bis(methylene)]bis-2-furfural (di-HMF), and water; subjecting said starting mixture to oxidation conditions in the presence of an oxygen-containing gas and a catalytically effective amount of a heterogeneous catalyst including one or more noble metals on a support so that both HMF and di-HMF react to give furane-2,5-dicarboxylic acid in a product mixture also including water and oxidation by-products. The use of a catalyst is also disclosed, the catalyst including one or more noble metals on a support as an heterogeneous oxidation catalyst for catalyzing in an aqueous starting mixture the reaction of both HMF and di-HMF to furane-2,5-dicarboxylic acid.
Abstract:
The invention relates to a method for producing a compound according to general formula (I), wherein R is H or C 1 -C 6 alkyl, by reaction of at least one compound of formula (II), wherein R has the the same meaning as in formula (I) and wherein R 1 is H, C 1 -C 12 alkyl or C 3 -C 12 cycloalkyl, with a compound of formula (III), wherein R 2 is H or C(O)R 3 , R 3 being H or C 1 -C 12 alkyl, in the presence of at least one enzyme suitable for transesterification.
Abstract:
The invention relates to a method for producing hexamethylenediamine, wherein a) a muconic acid starting material is provided, which is selected from among muconic acid, esters of muconic acid, lactones of muconic acid, and mixtures thereof, b) the muconic acid starting material is subjected to a reaction with hydrogen in the presence of at least one hydrogenation catalyst in order to form 1,6-hexanediol, and c) the 1,6-hexanediol obtained in step b) is subjected to amination in the presence of an amination catalyst in order to obtain hexamethylenediamine. The invention further relates to hexamethylenediamine which can be produced by means of said method.