摘要:
An optical transmission system is provided. The system includes a series of consecutive blocks of optical fiber. Each block of the system includes a first, second and third series of spans of optical fiber, where the second series of spans compensates for accumulated dispersion in the first and third series in the wavelength range of transmission. Optionally either the first or third series can be omitted.
摘要:
The present invention is directed to methods of producing soot used in the manufacture of optical waveguides. Both non-aqueous liquid reactants and aqueous solutions containing one or more salts are delivered through an atomizing burner assembly to form a homogenous soot stream containing the oxides of the selected elements contained within the non-aqueous liquid reactant and the aqueous solution. The resulting multi-component soot is collected by conventional methods to form preforms used in the manufacture of optical waveguide fibers. Alternatively, an aqueous solution may be atomized with a gas at a first burner assembly to form an aerosol and a reactant vaporized for delivery to a second burner assembly. Preforms produced by the methods are also disclosed. The aqueous solution is preferably one comprising a metal salt, e.g. acetate, nitrate, sulfate, carbonate, chloride, hydroxide. The metal of the metal salt is preferably an alkali metal, an alkaline earth metal, lead, lanthanum, cobalt, antimony, erbium, aluminum, neodymium, praeseodymium.
摘要:
A single mode optical waveguide fiber having a refractive index profile comprising not less than four segments (16, 18, 20, 22) provides waveguide properties well suited to undersea or other long haul telecommunications systems. The novel refractive index profile is characterized by a core segment having a negative relative index, in which, the reference index is that of silica. Another feature of the invention is a cladding layer which contains refractive index increasing dopant at least in the cladding portion adjacent the outermost core segment.
摘要:
A precision burner for oxidizing halide-free, silicon-containing compounds, such as, octamethylcyclotetrasiloxane (OMCTS), is provided. The burner includes a subassembly (13) which can be precisely mounted on a burner mounting block (107) through the use of an alignment stub (158), a raised face (162) on the burner mounting block (107) and corresponding recess (160) in the back of the subassembly (13). The burner's face includes four concentric gas-emitting regions: a first central region (36, 90) from which exits a mixture of OMCTS and O2, a second innershield region (38, 92) from which exits N2, a third outershield region (40, 42, 94, 96) from which exits O2, and a fourth premix region (44, 98) from which exits a mixture of CH4 and O2. The burner provides more efficient use of halide-free, silicon-containing raw materials than prior art burners.