摘要:
The present invention is to present a blood analyzer which can prevent an abnormal number of white blood cells caused by the lipid particles or the red blood cells of poor hemolysis from being output. The blood analyzer comprises: first white blood cell number obtaining means; second white blood cell number obtaining means; output means for outputting the number of the white blood cells obtained by the second white blood cell number obtaining means, and determining means for determining whether the number of the white blood cells obtained by the second white blood cell number obtaining means is abnormal, wherein the output means is configured to output the number of the white blood cells obtained by the first white blood cell number obtaining means when the determining means determines that the number of the white blood cells obtained by the second white blood cell number obtaining means is abnormal.
摘要:
A method for counting megakaryocytes in a specimen is described. In the method, first, erythrocytes in the specimen are lysed and nucleic acid in the megakaryocytes is stained with a fluorescent dye, and thereby, a measurement sample is prepared. Next, the cells in the measurement sample are irradiated with excited light so that the forward scattered light, the side scattered light and the fluorescence, which are emitted from the cells, are detected. Megakaryocytes are identified on the basis of the detected forward scattered light, the fluorescence and the side scattered light. Then, the identified megakaryocytes are counted.
摘要:
A method of staining bacteria comprises: working a polymethine dye on a sample in the presence of a substance capable of reducing nitrite ions to stain bacteria in the sample. A method of detecting bacteria comprises the following steps of: (1) working a polymethine dye on a sample by a method as described above to stain bacteria in the sample, (2) introducing the thus treated sample into a detecting part of a flow cytometer and irradiating cells of the stained bacteria one by one with light to measure scattered light and fluorescent light emitted from each of the cells; and (3) discriminating the bacteria from other components in accordance with an intensity of a scattered light signal and an intensity of a fluorescent light signal or a pulse width reflecting the length of particles to count the bacteria.