Abstract:
An automated welding system includes a welding robot and control circuitry. The welding bug robot includes a welding torch. The welding bug robot is configured to move on a track disposed around a circumference of a first pipe and perform a root pass welding operation at a joint between the first pipe and a second pipe. The control circuitry is configured to control movement of the welding bug robot around the circumference of the first pipe, apply a high energy welding phase via the welding torch to establish a first root condition, and apply a low energy welding phase via the welding torch to establish a second root condition.
Abstract:
A pressure-sensitive device for detecting fluid pressure in which fluid flows in a cap member via a joint is disclosed so as to securely joint the cap member to the joint. A washer-shaped nickel plate is arranged between a flange portion of the copper joint and the stainless-steel cap member, and the outer peripheral edge thereof is laser-welded. The nickel plate, a part of the flange portion and a part of the flat portion are melt and welded. As a result, a melt-solidified layer is formed in all over gap between the flange portion of the joint and the flat portion of the cap member so as to enter deeply from the outer peripheral edge of the flange portion toward the axis L of the joint between the flat portion and the flange portion. Furthermore, the melt-solidified layer is composed on copper, nickel and iron that are melt and solidified.
Abstract:
An induction heating system includes an induction heating head assembly configured to move relative to a workpiece. The induction heating system may also include a temperature sensor assembly configured to detect a temperature of the workpiece and/or a travel sensor assembly configured to detect a position, movement, or direction of movement of the induction heating head assembly relative to the workpiece, and to transmit feedback signals to a controller configured to adjust the power provided to the induction heating head assembly by a power source based at least in part on the feedback signals. In certain embodiments, the induction heating system may also include a connection box configured to receive the feedback signals, to perform certain conversions of the feedback signals, and to provide the feedback signals to the power source. Furthermore, in certain embodiments, the induction heating system may include an inductor stand assembly configured to hold the induction heating head assembly against the workpiece.
Abstract:
A pipe processing tool that is configured to deform the end of a pipe so that the circumferential shape of the end of the pipe generally matches the circumferential shape of an adjacent pipe end. Matching the circumferential shapes of the pipe ends is advantageous during a pipe attachment process. The pipe processing tool can include a deformation ring with a plurality of pipe deformation members. Each pipe deformation member faces radially inward and is actuatable in a radial direction toward and away from the center of the deformation ring in order to permit engagement with the pipe. Each pipe deformation member is individually and separately actuatable from the other pipe deformation members so that the circumferential shapes of the pipes can be altered by controlling suitable ones of the pipe deformation members.
Abstract:
Provided are a welded titanium tube (1) capable of improving heat-transfer performance and detecting surface defects and a manufacturing method therefor. The welded titanium tube (1) is formed of a tubular-shaped titanium plate, whose edges are butt-welded. The welded titanium tube (1) includes an outer peripheral surface and an inner peripheral surface, at least one of which is provided with a concavo-convex pattern including a base surface (3) and a plurality of protrusions (2). A mean maximum height of the protrusions (2) is in the range of 12 to 45 µm. A ratio of a maximum value to a mean pitch of the protrusions (2) is less than 2. A ratio of a mean maximum dimension of the protrusions (2) to the mean pitch is 0.90 or less, and a ratio of the mean maximum height to a wall thickness is 0.11 or less.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Förderrohrs 18 sowie ein Förderrohr 18 aufweisend einen im Bereich eines Endabschnittes umlaufenden Ringwulst 13 zur thermischen Entkoppelung eines doppellagigen Rohrkörpers 1 bei Ausführen der thermischen Fügenaht 17.
Abstract:
Es wird ein Ventil für einen Antrieb einer Tür, eines Fensters oder dergleichen beschrieben, mit einem Aufnahmeelement und einer Ventilhülse, wobei die Ventilhülse an einem Verbindungsbereich des Aufnahmeelements durch Schweißen festgelegt ist. Am Verbindungsbereich ist wenigstens eine Aufnahme vorgesehen, in der ein Energierichtungsgeber angeordnet ist, der mit der Ventilhülse einen den Energierichtungsgeber umgebenden Raum zur Aufnahme von Schweißaustrieb ausbildet. Weiterhin wird ein Verfahren zum Fügen des Ventils angegeben.
Abstract:
Die Erfindung betrifft ein Verfahren zum Reinigen einer Innenwand (34) eines Rohres (14), welches von einer Spannvorrichtung (12) einer Laserbearbeitungsmaschine (11) aufgenommen und mit einem Laserstrahl (12) bearbeitet wird, dadurch gekennzeichnet, dass vor einem letzten Trennschnitt in das von der Spannvorrichtung (12) gehaltene Rohr (14) ein Reinigungsschritt durchgeführt wird, bei dem zumindest die Innenwand (34) des Rohres (14) vom freien Rohrende (36) bis zum einzubringenden Trennschnitt zur Bildung eines Werkstücks mit einer Reinigungsvorrichtung (30) gereinigt wird, sowie eine Anbauvorrichtung zur Aufnahme einer Reinigungsvorrichtung für eine Laserbearbeitungsmaschine sowie eine Laserbearbeitungsmaschine.