摘要:
The present invention is used to produce long carbon nanotubes used, for example, in automobile and/or aircraft industry. An object of the invention is to obtain bundles of multi-walled and well oriented nanotubes of sufficient length and provide stability of continuous nanotubes producing process. The method comprises introducing a carbon-bearing component, a promoter and a precursor of a carbon nanotube growth catalyst in a carrier gas stream to form a mixture of these components; passing said mixture through the a reactor heated to an operating temperature of 1000° C. to 1200° C. and removing nanotubes formed in the reactor into a product receiver. The mixture is fed in the reactor from the bottom upwards at a linear flow velocity of 50 mm/c to 130 mm/c. When the temperature in the reactor reaches said operating temperature, the linear flow velocity of the mixture is decreased to 4-10 mm/c, and the linear flow velocity is increased to 30-130 mm/c at the outlet of the reactor. The apparatus comprises means for introducing the carbon-bearing component, the promoter and the precursor of the carbon nanotube growth catalyst in the carrier gas stream, a vertical reactor with a working chamber, means for heating the working chamber to the operating temperature, means for delivering the mixture to the working chamber of the reactor and means for removing products from the working chamber. The chamber is made of three successive sections, namely a lower inlet 16 section, a middle 17 section and an upper outlet 18 section and the diameter of the lower section 16 is ⅕ to ⅓ of the diameter of the middle section 17, while the diameter of the upper section 18 is from ¼ to ⅓ of the diameter of the middle section 17.
摘要:
A wire includes a plurality of carbon nanotube infused fibers in which the infused carbon nanotubes are aligned parallel to the fiber axes. An electromagnetic shield for a wire includes a plurality of carbon nanotube infused fibers, in which the infused carbon nanotubes are aligned radially about the fiber axes. The plurality of carbon nanotube infused fibers are arranged circumferentially about the wire with the fiber axes parallel to the wire. A self-shielded wire includes 1) a wire that includes a plurality of carbon nanotube infused fibers in which the infused carbon nanotubes are aligned parallel to the fiber axes; and 2) an electromagnetic shield that includes a plurality of carbon nanotube infused fibers in which the carbon nanotubes are aligned radially about the fiber axes. The axes of the carbon nanotube infused fibers of the wire and the carbon nanotube infused fibers of the electromagnetic shield share are parallel.
摘要:
The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
摘要:
The present invention relates to an apparatus for producing a carbon nanotube fiber. The apparatus includes: a vertical reactor having a reaction zone; a concentric double-pipe inlet tube disposed on top of the reaction zone and consisting of an inner pipe through which a spinning feedstock including a spinning solution and a first gas is introduced into the reaction zone and an outer pipe defining a concentric annular portion surrounding the inner pipe and through which a second gas is introduced into the reaction zone; heating means for heating the reaction zone; and a discharge unit disposed under the bottom of the reaction zone to discharge a carbon nanotube fiber therethrough. The spinning feedstock entering the reaction zone through the inner pipe of the inlet tube is carbonized and graphitized while flowing from the top to the bottom of the reaction zone to form a carbon nanotube fiber consisting of a continuous sock (or aggregates) of carbon nanotubes. The second gas entering the reaction zone through the outer pipe of the inlet tube forms a gas curtain surrounding the circumference of the continuous sock of carbon nanotubes while flowing from the top to the bottom of the reaction zone. The gas curtain minimizes the contamination of the inner wall of the reactor and facilitates the discharge of the carbon nanotube fiber. Therefore, the apparatus of the present invention is suitable for the production of a carbon nanotube fiber in a continuous manner.
摘要:
La présente invention se rapporte à une composition catalytique pour la synthèse de nanotubes de Carbone comportant un catalyseur actif et un support catalytique, le catalyseur actif comportant un mélange de Fer et de Cobalt dans une forme d'oxydation quelconque et le support catalytique comportant de la vermiculite exfoliée.
摘要:
Provided is a production apparatus (100) for continuously producing aligned carbon nanotube aggregates on a substrate supporting a catalyst while continuously transferring the substrate. The production apparatus (100) includes gas mixing prevention means (12, 13) for preventing gas present outside a growth furnace (3a) from flowing into the growth furnace (3a). The gas mixing prevention means (12, 13) includes: a seal gas ejection section (12b, 13b) for ejecting a seal gas along opening planes of (i) an opening of the growth furnace (3a) through which opening a catalyst substrate (10) is transferred into the growth furnace (3a) and (ii) an opening of the growth furnace (3a) through which opening the catalyst substrate (10) is transferred out of the growth furnace (3a); and an exhaust section (12a, 13a) for sucking and exhausting the seal gas out of the production apparatus (100), so that the seal gas does not flow into the growth furnace (3a) through the openings of the growth furnace (3a). The production apparatus (100) prevents the outside air from flowing into the production apparatus (100), uniformly controls, within a range suitable to production of CNTs, a concentration distribution(s) and a flow rate distribution(s) of a raw material gas and/or a catalyst activation material on the substrate, and does not disturb gas flow as much as possible in the growth furnace (3a).
摘要:
A system is provided that can be utilized to generate nanotubes with substantially similar chirality. The system provides a resonant frequency, keyed to a desired radial breathing mode linked to the desired chirality, that causes a template of catalysts particles or nanotubes to oscillate at the provided resonant frequency, so as to stimulate growing nanotubes to oscillate at a corresponding resonant frequency. This resonant frequency can be a result of a high frequency field or the natural heat radiation generated by the system.
摘要:
The present invention provides a continuous method for growing nanostructures comprising the steps of: depositing a catalyst material onto the surface of a growth substrate; exposing a first portion of the growth substrate to a first set of conditions to cause catalytic formation of nanostructures on the surface of the growth substrate; removing nanostructures from a second portion of the growth substrate; and while exposing the first portion of the growth substrate to the first set of conditions, treating the second portion of the growth substrate to a second set of conditions to reactivate the catalyst material. An apparatus for growing nanostructures is also provided.