摘要:
A thermal protection material (41) is provided. The material includes a non-woven nanotube sheet, a substrate material (42) adjacent to the non-woven nanotube sheet, and an adhesive material positioned between the non-woven sheet and the substrate material. The thermal protection material (41) can further include a coating that can enhance strength and oxidation protection.
摘要:
A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
摘要:
A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
摘要:
The device for extracting heat from carbon nanotubes wires or cables used under high power applications is provided. The device can include a thermally conductive member for placement against a heat source and for directing heat away from the heat source to a heat dissipating medium. The device can further include an electrically conductive member positioned on the thermally conductive member and made from a layer of carbon nanotubes, to reduce electrical resistance along the electrically conductive member. A geometric pattern can be imparted to the electrically conductive member to enhance dissipation of heat away from the thermally conductive member and the heat source.
摘要:
An antenna for the transmission and reception of electromagnetic radiation is provided The antenna includes a body portion, which can be flexible to permit incorporation of the antenna into a material. The antenna also includes an aggregate of extended length nanotubes along the body portion, and a plurality of contact points between adjacent nanotubes to permit transmission of electromagnetic radiation, while reducing resistivity along the antenna at a high frequency, for example, above 100 MHz. A method of manufacturing an antenna is also provided.
摘要:
A heating device having a thermally conducting member made from a matrix of carbon nanotubes and having opposing ends. A connector portion can be positioned at each end of the conducting member, and can be capable of receiving a current from an external source to permit the conducting member to generate heat. A coupling mechanism can be included and associated with the connector portion so as to provide the connector portion with substantially uniform contact across a contact surface area with the conducting member. Methods of using the heating device are also disclosed.
摘要:
A thermoelectric device that can exhibit substantially high specific power density is provided. The device includes core having a p-type element made from carbon nanotube and an n-type element. The device also includes a heat plate in and a cool plate, between which the core can be positioned. The design of the thermoelectric device allows the device to operate at substantially high temperature and to generate substantially high power output, despite being light weight. A method for making the thermoelectric device is also provided.
摘要:
A system is provided that can be utilized to generate nanotubes with substantially similar chirality. The system provides a resonant frequency, keyed to a desired radial breathing mode linked to the desired chirality, that causes a template of catalysts particles or nanotubes to oscillate at the provided resonant frequency, so as to stimulate growing nanotubes to oscillate at a corresponding resonant frequency. This resonant frequency can be a result of a high frequency field or the natural heat radiation generated by the system.