摘要:
A MEM device has a movable element (30), a pair of electrodes (e1, e2) to move the movable element, one electrode having an independently movable section (e3), resiliently coupled to the rest of the respective electrode to provide additional resistance to a pull in of the electrodes. This can enable a higher release voltage Vrel, and thus reduced risk of stiction. Also, a ratio of Vpi to Vrel can be reduced, and so a greater range of voltage is available for movement of the movable element. This enables faster switching. The area of the independently movable section is smaller than the rest of the electrode, and the spring constant of the resilient coupling is greater than that of the flexible support. Alternatively, the movable element can have a movable stamp section resiliently coupled and protruding towards the substrate to provide an additional resistance to pull in when it contacts the substrate.
摘要:
A MEM device has a movable element (30), a pair of electrodes (e1, e2) to move the movable element, one electrode having an independently movable section (e3), resiliently coupled to the rest of the respective electrode to provide additional resistance to a pull in of the electrodes. This can enable a higher release voltage Vrel, and thus reduced risk of stiction. Also, a ratio of Vpi to Vrel can be reduced, and so a greater range of voltage is available for movement of the movable element. This enables faster switching. The area of the independently movable section is smaller than the rest of the electrode, and the spring constant of the resilient coupling is greater than that of the flexible support. Alternatively, the movable element can have a movable stamp section resiliently coupled and protruding towards the substrate to provide an additional resistance to pull in when it contacts the substrate.
摘要:
A micro electro mechanical system switch and a method of fabricating the same. The micro electro mechanical system switch includes a substrate a plurality of signal lines formed at sides an upper surface of the substrate and including switching contact points and a plurality of immovable electrodes on the upper surface of the substrate and between the plurality of signal lines. An inner actuating member performs a seesaw based on a center of the substrate and together with an outer actuating member. Pushing rods are formed at ends of an upper surface of the inner actuating member with ends protruding from and overlapping with an upper portion of the outer actuating member. Contacting members are formed on a lower surface of the outer actuating member so as to be pushed by the pushing rods and contacting the switching contact points of the signal lines.
摘要:
Signal lines (5a, 5b) formed on a fixed substrate 1 are arranged on the same straight line. A movable substrate (2) is elastically supported on the fixed substrate (1) through beam portions (11) provided at two positions which are point-symmetrical with each other with a movable contact (16) centered thereon. At least portions opposing the signal lines (5a, 5b) are removed from the movable substrate (2). The movable contact (16) is elastically supported at two points that are orthogonal to the straight line on which the signal lines (5a, 5b) are arranged and do not face the signal lines (5a, 5b). A pair of protrusions 17 are formed at positions at which after closing the contacts, if a voltage were applied between the fixed electrode 4 and the movable electrode 12 without the protrusion, the fixed substrate 1 and the movable substrate 2 would contact each other following the contact between the fixed contact 7 and the movable contact 16, in a point-symmetrical manner with the movable contact 16 centered thereon. With this arrangement, it is possible to provide an electrostatic micro-relay which has a simple and small-size structure that is easily manufactured at low costs, and is superior in high-frequency characteristics with a suitable contact release force.
摘要:
A bi-stable memory element (1) comprises a base contact (3), and a bridging contact (8), both made from an electrically conductive material. The bridging contact (8) is dimensioned so as to have two stable positions, in one of which the bridging contact (8) is in contact with the base contact (3), and in the other of which the bridging contact (8) is spaced apart from the base contact (3). Deflection means (4, 5) deflects the bridging contact (8) from one stable position to the other.
摘要:
A micro electromechanical device comprising a first and a second conductor, the first conductor defining a plane and the second conductor having a collapsible portion extending at a predetermined distance above said plane and above the first conductor, said collapsible portion during use of the device being attracted by the first conductor as a result of an RF induced force, the orthogonal projection of said collapsible portion onto said plane defining a principal actuation area, said collapsible portion being movable between a distant position further from the principal actuation area to a proximate position closer to the principal actuation area, the movement of the collapsible portion being actuatable by applying an attraction force in said principal actuation area, said collapsible portion showing a variable actuation liability in longitudinal direction with a region of maximum actuation liability where the attraction force to be applied for actuation is a minimum over the whole principal actuation area, the first conductor being laterally offset from said region of maximum actuation liability by a predetermined distance, so that actuation of the collapsible portion by means of the first conductor requires a higher attraction force than said minimum.
摘要:
A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.