POLYESTER-POLYCARBONATE BLENDS USEFUL FOR EXTRUSION BLOW-MOLDING
    22.
    发明授权
    POLYESTER-POLYCARBONATE BLENDS USEFUL FOR EXTRUSION BLOW-MOLDING 有权
    聚酯和聚碳酸酯的挤出吹塑混合工

    公开(公告)号:EP1583798B1

    公开(公告)日:2007-10-31

    申请号:EP03799991.9

    申请日:2003-12-17

    摘要: Blends of polycarbonate and copolyester that are capable of being extrusion blow-molded are described. The blends preferably comprise (I) about 1 to 99% by weight of a linear or branched polycarbonate and (II) about 1 to 99% by weight of a mixture of (i) about 40 to 100% by weight of a first copolyester and (ii) about 0 to 60% by weight of a second copolyester. The first copolyester preferably comprises (A) diacid residues comprising terephthalic acid residues, (B) diol residues comprising about 45 to 75 mole percent of 1,4-cyclohexanedimethanol (CHDM) residues and about 25 to 55 mole percent of ethylene glycol residues, and (C) about 0.05 to 1.0 mole percent of the residue of a trifunctional monomer. The optional second copolyester preferably comprises (A) diacid residues comprising terephthalic acid residues and (B) diol residues comprising about 52 to 90 mole percent of CHDM residues and about 10 to 48 mole percent of ethylene glycol residues. Preferably, the average amount of CHDM residues in the copolyester mixture II ranges from 52 to 75 mole percent. It has been surprisingly found that the presence of the trifunctional residues in the first copolyester can impart sufficient melt strength for the blends to be extrusion blow-molded. Containers and shaped articles made from the blends as well as a method of making the articles are also described.

    POLYESTER-POLYCARBONATE BLENDS USEFUL FOR EXTRUSION BLOW-MOLDING
    30.
    发明公开
    POLYESTER-POLYCARBONATE BLENDS USEFUL FOR EXTRUSION BLOW-MOLDING 审中-公开
    聚酯聚碳酸酯共混物挤出吹塑

    公开(公告)号:EP1807473A1

    公开(公告)日:2007-07-18

    申请号:EP05824765.1

    申请日:2005-11-01

    IPC分类号: C08L69/00 C08L67/00 B29C49/00

    摘要: Blends of polycarbonate and copolyester that are capable of being extrusion blow-molded are described. The blends preferably comprise (I) about 1 to 99% by weight of a linear or branched polycarbonate and (II) about 1 to 99% by weight of a mixture of (i) about 40 to 100% by weight of a first copolyester and (ii) about 0 to 60% by weight of a second copolyester. The first copolyester preferably comprises (A) diacid residues comprising terephthalic acid residues, (B) diol residues comprising about 45 to 75 mole percent of 1,4-cyclohexanedimethanol (CHDM) residues and about 25 to 55 mole percent of ethylene glycol residues, and (C) about 0.05 to 1.0 mole percent of the residue of a trifunctional monomer. The optional second copolyester preferably comprises (A) diacid residues comprising terephthalic acid residues and (B) diol residues comprising about 52 to 90 mole percent of CHDM residues and about 10 to 48 mole percent of ethylene glycol residues. Preferably, the average amount of CHDM residues in the copolyester mixture II ranges from 52 to 75 mole percent. It has been surprisingly found that the presence of the trifunctional residues in the first copolyester can impart sufficient melt strength for the blends to be extrusion blow-molded. Containers and shaped articles made from the blends as well as a method of making the articles are also described.