Abstract:
The present invention is related to a method of manufacturing a filled polymeric membrane comprising a first step of preparing a filler suspension comprising a solvent for a glassy polymer and nanometre-sized particles. The nanometre-sized particles in said filler suspension are aggregated in aggregates having an average aggregate size in the range between 50 nm and smaller than 200 nm. In a following step, the glassy polymer is added to the filler suspension to obtain a polymer suspension. Next, the glassy polymer is dissolved in the polymer suspension. In a next step, the polymer suspension is cast on a substrate, followed by a step of removing the solvent. A filled polymeric membrane comprising aggregates of nanometre-sized filler particles and uses of the membrane in pervaporation and nanof iltration are also provided.
Abstract:
The invention relates to an hydrophilic membrane comprising a membrane carrier and a hydrophilic coating with good properties. The coating may comprise covalently bound inorganic-organic hybrid material; or the coating may comprise ring-opening polymerized components like epoxy resins. The coating composition preferably is applied in a solvent, the solvent is evaporated, and the coating is cured with UV radiation. The hydrophilic membrane is very useful in water purification, and in other applications.
Abstract:
The invention relates to a gas permeable membrane for the optical measurement of the partial pressure and/or the concentration of a gas species, the membrane comprises a porous light- transmissible membrane matrix containing a metal oxide wherein the membrane matrix is at least partially charged with at least one gas-selective compound whose optical characteristics change upon an interaction with a corresponding gas species. The average pore diameter of the pores of the membrane matrix ranges from 1 to 50 nanometers, the total pore volume from 1 to 30 mL/m2 and the metal oxide is pseudo-boehmite with the general formula AI 2 O 3 n * H 2 O, wherein n ranges from 1 to 1.5, or an alumina oligomer. Further, the invention relates to the use of the membrane for the measurement of the presence, the partial pressure and/or the concentration of a gas, for example in cultivation flasks and bags, in gas atmospheres, incubators, medical devices, solutions, vapors and exhaust gases. In another aspect, the invention provides a method for the manufacture of the membrane according to the invention.
Abstract:
The invention is a filter for gaseous media that comprises nano alumina fibers and second fibers arranged in a matrix with the nano alumina fibers to create asymmetrical pores. The filter is a high efficiency, high capacity particulate filter that intercepts pathogens and other particulate matter from gaseous media, including vapor-suspended particles. The new filter has an improved retention of water- aerosolized particles as compared to conventional HEPA filters and may be used as a pre-filter that extends the life of HEPA filters by about five to ten times. The invention is also a method of manufacturing and using the filter.
Abstract:
Disclosed is a membrane unit (30) for a field-flow fractionation apparatus, comprising a regenerable membrane (5). In a preferred embodiment the membrane unit (30) is of a heat-resistant material. A method for high temperature field-flow fractionation is also described.
Abstract:
The present invention describes a glass honeycomb structure (100) having a variety of shapes and sizes depending on its ultimate application. Unlike prior art honeycomb structures made from ceramics, the inventive glass honeycomb can be readily bent and/or redrawn. Furthermore, the inventive honeycomb structure is light-weight, yet able to support heavy loads on its end faces (10a, 10b). Therefore, the inventive honeycomb can be used as a light-weight support for such objects as mirrors. Other useful properties of the extruded glass honeycomb are its high softening temperature, its transparency to ultraviolet and visible light, and its ability to be redrawn. Embodiments that rely upon one or more of these properties include: a bio-reactor, a membrane reactor, a capillary flow controller, a high efficiency filtration system, in-situ water treatment, high temperature dielectric material, and photonic band gap material.
Abstract:
The invention relates to coarsely porous metal structures in which a thin surface layer which exclusively contains pores having sizes of from about 2 to 0.01 νm is appplied to a metal structure, and to a method for manufacturing coarsely porous metal workpieces in which particles having sizes of from 2 to 0.05 νm of metals or alloys, of compounds to be reduced to metals or alloys, or of ceramic materials are applied in the pore mouths of the coarsely porous metal sublayer.
Abstract:
Disclosed herein are asymmetric multilayer carbon molecular sieve (“CMS”) hollow fiber membranes and processes for preparing the membranes. The processes include simultaneously extruding a core dope containing a polymer and suitable nanoparticles, a sheath dope, and a bore fluid, followed by pyrolysis of the extruded fiber.