Abstract:
Beschrieben wird ein fotoelektrischer Meßkopf zum berührungslosen Abtasten von Meßbereichen, insbesondere von Meßfeldern auf einem eben aufliegenden Druckbogen, wobei der Meßkopf an seiner Unterseite Austrittsöffnungen für Druckluft aufweist. Ein derartiger auf einem Luftkissen schwebender Meßkopf soll dahingehend verbessert werden, daß sich bei hoher Stabilität des tragenden Luftkissens ein geringstmöglicher und stabiler Abstand zur Unterlage ergibt. Dies gelingt dadurch, daß die Austrittsöffnungen für die Druckluft aus einer, auf Grund einer mikroporösen Struktur luftdurchlässigen Platte gebildet sind.
Abstract:
A density measurement position adjustment method includes the steps of setting a reference sheet on which a predetermined pattern is printed on an X-Y coordinate table, designating at least three reference points within the pattern of the reference sheet, determining coordinate positions on the X-Y coordinate table of the three reference points, and memorizing coordinate positions at density measurement reference points within the pattern of the reference sheet with a single point and two intersecting lines obtained by computation based on the coordinate positions of the reference points being as an origin, an X-axis and a Y-axis, respectively. This method further includes the steps of setting a sample sheet on which the same pattern as the pattern on the reference sheet is printed on the X-Y coordinate table, detecting coordinate positions on the X-Y coordinate table of corresponding reference points within the pattern on the sample sheet, determining a detection origin, a detection X-axis and a detection X-axis by computation based on the coordinate positions of the corresponding reference points on the sample sheet, and correcting coordinate positions of density measurement points, which correspond to the density measurement points on the reference sheet, within the pattern on the sample sheet so that the detection origin, detection X-axis and detection Y-axis are in correspondence with the origin, X-axis and Y-axis, espectively.
Abstract:
A method and apparatus for obtaining reference samples, i.e. measuring reference targets (62) on a reference stage (61) during the generation of a mid-infrared (MIR) image without requiring that a sample specimen (16), being placed on a specimen stage (57) and imaged, be removed is disclosed. A tunable MIR laser (11) generates a light beam (18) that is focused onto the sample specimen on the specimen stage that moves the specimen in a first direction (33). An optical assembly includes a scanning assembly (31) having a focusing lens (55) and a mirror (56) that moves in a second direction (32), different from the first direction, relative to the specimen stage. A light detector (13) measures an intensity of light leaving the point on the specimen. A controller (39) forms an image from the measured intensity. The reference stage (61) is positioned such that the scanning assembly moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
A method and apparatus for obtaining reference samples, i.e. measuring reference targets (62) on a reference stage (61) during the generation of a mid-infrared (MIR) image without requiring that a sample specimen (16), being placed on a specimen stage (57) and imaged, be removed is disclosed. A tunable MIR laser (11) generates a light beam (18) that is focused onto the sample specimen on the specimen stage that moves the specimen in a first direction (33). An optical assembly includes a scanning assembly (31) having a focusing lens (55) and a mirror (56) that moves in a second direction (32), different from the first direction, relative to the specimen stage. A light detector (13) measures an intensity of light leaving the point on the specimen. A controller (39) forms an image from the measured intensity. The reference stage (61) is positioned such that the scanning assembly moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
Sensitivity is increased by enhancing the fluorescence collection efficiency while suppressing the increase in size of an objective lens. An objective lens 17 is structured to have a convex lens part 26 in a center portion and to have a truncated conical cylindrical body 27 around the convex lens part 26. Therefore, a fluorescence component b having too wide an emission angle to fit in the convex lens part 26, of fluorescence emitted from a sample 16, can be collected by total reflection on an outer peripheral surface 27b of the cylindrical body 27. Thus, even light having too wide an emission angle to be collected by a normal convex lens can be collected. As a result, it is possible to suppress the increase in size of the objective lens, to enhance the fluorescence collection efficiency, and to prevent the S/N ratio from being decreased by the existence of undetected fluorescence that is blocked by a prism 20. This can realize a fluorescence information reading device having high sensitivity.
Abstract:
The present invention relates to a method for measuring the near-field signal of a sample in a scattering type near-field microscope and to a device for conducting said method.
Abstract:
The disclosure is directed to systems and methods for precisely measuring birefringence properties of large-format samples of optical elements. A gantry-like configuration is employed for precise movement of birefringence measurement system components relative to the sample. There is also provided an effective large-format sample holder that adequately supports the sample to prevent induced birefringence therein while still presenting a large area of the sample to the unhindered passage of light.
Abstract:
A gloss sensor (10) for optically measuring the gloss of a moving surface (12) includes a housing (16) having an exterior surface (28) which is generally parallel with the moving surface (12). A light source (18) is carried by the housing (16) and configured for emitting a source beam (38) of light. At least one light detector (26) is carried by the housing (16). An optical prism (22) is mounted to the housing (16) at the exterior surface (28). The prism (22) is configured to split the source beam (38) into a reference beam (56) which is reflected by the prism (22) internally within the housing (16) to the one or more light detectors (26), and a measurement beam (58) which passes through the prism (22) and is reflected by the moving surface (12) to the one or more light detectors (26).
Abstract:
Translational motion of a scanning head relative to a planar target, or vice versa, is achieved by a belt and pulley system with a counterweight that is also driven by a belt and pulley system at the same speed but in the opposite direction as the scanning head. The components and belt and pulley system are oriented such that all moving components remain on one side of the target and remain so during their entire range of movement.