Abstract:
L'invention propose un procédé optique de mesure et un appareil optique pour déterminer la position spatiale d'au moins un nanoémetteur lumineux d'un échantillon, le procédé comportant : la projection d'une séquence d'au moins deux distributions lumineuses compactes de familles topologiques différentes sur l'échantillon, la détection de la lumière réémise par ledit au moins un nanoémetteur lumineux de l'échantillon ; la génération, d'au moins une image optique pour chaque distribution lumineuse, à partir de la lumière détectée ; et l'analyse algorithmique des images optiques pour obtenir une information de localisation dudit au moins un nanoémetteur lumineux. L'invention concerne en outre un procédé optique de mesure and un appareil optique pour déterminer la position spatiale d'une pluralité de sources lumineuses ponctuelles le procédé comportant la détection de la lumière émise par la pluralité des sources lumineuses ponctuelles ; et la séparation de la lumière émise sur une pluralité de détecteurs pour des détections simultanées ou séquentielles ; la proportion de la lumière émise par un source lumineuse ponctuelle, canalisée vers un détecteur spécifique, étant dépendant de la position spatiale dudit source lumineuse ponctuelle; et la génération, des images optiques, à partir de la lumière détectée ; et l'analyse algorithmique des images optiques pour obtenir une information de localisation de la pluralité des sources lumineuses ponctuelles.
Abstract:
A method of measuring a spectral response of a sample (1), in particular a biological sample (1), comprises the steps generation of probe light having a primary spectrum, irradiation of the sample (1) with the probe light, including an interaction of the probe light and the sample (1), and spectrally resolved detection of the probe light having a modified spectrum, which deviates from the primary spectrum as a result of the interaction of the probe light and the sample (1), said modified spectrum being characteristic of the spectral response of the sample (1), wherein the probe light comprises probe light pulses (2) being generated with a fs laser source device (10). Furthermore, a spectroscopic measuring apparatus is described, which is configured for measuring a spectral response of a sample (1), in particular a biological sample (1).
Abstract:
A microscope apparatus including: an illumination optical system that radiates activation light to activate some of fluorescent materials included in a sample and excitation light to excite at least some of the activated fluorescent materials; an image forming optical system that: has an objective lens and an astigmatic optical system that generates astigmatism to at least part of fluorescence from the fluorescent materials; and forms an image of the fluorescence; an image-capturing unit that captures an image formed by the image forming optical system; a drive unit that moves an image-capturing position in the sample along an optical axis-direction of the objective lens; and a control unit, wherein the control unit causes the image-capturing unit to capture images in a plurality of numbers of frames respectively at a first image-capturing position and at a second image-capturing position different from the first image-capturing position.
Abstract:
A system for identifying and optionally treating biological material is provided. The system includes a coherent light source for irradiating the biological material and device for collecting light waves reflected from the biological material and transforming the light waves to nanoplasmonic waves. The system also includes a processing module for extracting phase and amplitude information from the nanoplasmonic waves to identify the biological material based on the phase and amplitude information.
Abstract:
A Raman spectrum inspection apparatus and a security monitoring method for a Raman spectrum inspection apparatus are provided. The Raman spectrum inspection apparatus includes: a laser device configured to emit an exciting light; an optical device configured to guide the exciting light to an object to be detected and collect a light signal from the object; a spectrometer configured to split the collected light signal to generate a Raman spectrum of the object; and a security detector configured to detect an infrared light emitted from the object.
Abstract:
In one embodiment, a CO 2 leak detection instrument detects leaks from a site (e.g., a CO 2 sequestration facility) using rapid concentration measurements of CO 2 , O 2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy) . Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO 2 and O 2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO 2 and O 2 concentrations is analyzed over time intervals to detect any changes in CO 2 concentration that are not anti-correlated with O 2 concentration, and to identify a potential CO 2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.
Abstract:
The present invention pertains to the measurement of the refractive index of a medium, such as a fluid, through the wall of its container. The essential characteristic of the invention is that, by using at least two separate light paths that are of unequal length and that reflect from the wall/medium interface, it is possible to perform the measurement of the refractive index of the medium so that the result is insensitive to the color and thickness of the wall.
Abstract:
Semiconductor metrology systems based on directing radiation on a wafer, detecting second harmonic generated (SHG) radiation from the wafer and correlating the second harmonic generated (SHG) signal to one or more electrical properties of the wafer are disclosed. The disclosure also includes parsing the SHG signal to remove contribution to the SHG signal from one or more material properties of the sample such as thickness. Systems and methods described herein include machine learning methodologies to automatically classify obtained SHG signal data from the wafer based on an electrical property of the wafer.