Abstract:
1.- A system (1) for analysing the chemical composition of a target material (100) comprising: [a] a laser system (2) [b] at least one scanner assembly for directing said laser beam (4) onto said target material (100) to produce luminous plasma on said target material (100) and to collect the light emitted thereafter, and [c] a spectral analyser (10). The scanner assembly further comprises at least [d] first light redirecting means (12) being configured such as to let the light pass therethrough when the light falls on one first side (14) of said first light redirecting means (12) and to redirect at least part of the light when the light falls on a second opposite side (16) opposite. Said first light redirecting means (12) are arranged in the system (1) to gather said light emitted by said plasma, collinearly with the laser beam directed onto said target material (100) and to redirect said light emitted by said plasma onto said first focusing means (6).
Abstract:
Die Erfindung betrifft eine Vorrichtung (1) und ein Verfahren zum Bestimmen von Parametern von fluidhaltigen Proben (2) in einem System (3) zum individuellen Bestrahlen der Proben (2) mit Licht (4) einer Lichtquelle (5) in einer im wesentlichen vertikalen Einstrahlungsrichtung (6). Dabei umfasst dieses System (3) einen Detektor (7) zum Messen des von einer einzelnen Probe kommenden Lichts (8) und dieser Detektor (7) weist eine Detektionsrichtung (9') auf, welche auf einer optischen Achse (9) liegt, die im wesentlichen parallel zur optischen Achse (6) der Lichtquelle (5) ist. Diese Vorrichtung (1) umfasst zumindest eine Spiegelfläche (10), mit welcher das im wesentlichen vertikal aus der Lichtquelle (5) ankommende Licht (4) in eine im wesentlichen horizontale Durchstrahlungsrichtung (11) zumindest teilweise ablenkbar ist. Die erfindungsgemässe Vorrichtung bzw. das erfindungsgemässe Verfahren sind dadurch gekennzeichnet, dass die Detektionsrichtung (9') des Detektors (7) - zum Messen des individuellen, von einer einzelnen Probe (2) kommenden Lichts (8) - so in einem Winkel zu der optischen Achse des die Probe (2) durchstrahlenden Lichts (4) angeordnet ist, dass nur das von der einzelnen Probe (2) kommende Licht (8), nicht aber dieses Licht (4) in den Detektor (7) gelangt.
Abstract:
An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
The invention relates to a system comprising a broadband optical light source and a sorting device and more specifically to laser sorting devices. The object of the present invention is to provide a system comprising a sorting device with a light-source offering all wavelengths for the sorting process. This is solved by using an all fiber supercontinuum light source.
Abstract:
Ein Optischer Sensor wird zur Erfassung von punktförmigen, linienförmigen oder flächigen Defekten eingesetzt, die an glatten Oberflächen wie Glas auftreten können. Der Sensor bestehend aus: a) einem telezentrischen Laserscanner (12) mit - einem Laser (1) zur annähernd senkrechten Beleuchtung einer glatten Oberfläche (5), - einem Scannspiegel (2), - einer telezentrischen Optik (4) zur Führung von Beleuchtungs- und Detektionsstrahlen,
b) einer Erfassungseinheit (11) mit - einer Detektoroptik (8), - einer zentralen Blende (9), die konzentrisch in der Nähe der Detektoroptik von dieser aus in Richtung auf den telezentrischen Laserscanner (4) positioniert ist, - einem hochempfindlichen Photomultiplier (6) zur Erfassung von Streulicht, das von Defekten auf glatten Oberflächen (5) ausgeht, - einer dem Photomultiplier (6) vorgeschalteten Schlitzblende (7).
Anwendung/Produkt: Prüfanlage zur optischen Inspektion von Oberflächen
Abstract:
A method and apparatus for obtaining reference samples, i.e. measuring reference targets (62) on a reference stage (61) during the generation of a mid-infrared (MIR) image without requiring that a sample specimen (16), being placed on a specimen stage (57) and imaged, be removed is disclosed. A tunable MIR laser (11) generates a light beam (18) that is focused onto the sample specimen on the specimen stage that moves the specimen in a first direction (33). An optical assembly includes a scanning assembly (31) having a focusing lens (55) and a mirror (56) that moves in a second direction (32), different from the first direction, relative to the specimen stage. A light detector (13) measures an intensity of light leaving the point on the specimen. A controller (39) forms an image from the measured intensity. The reference stage (61) is positioned such that the scanning assembly moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
A method and apparatus for obtaining reference samples, i.e. measuring reference targets (62) on a reference stage (61) during the generation of a mid-infrared (MIR) image without requiring that a sample specimen (16), being placed on a specimen stage (57) and imaged, be removed is disclosed. A tunable MIR laser (11) generates a light beam (18) that is focused onto the sample specimen on the specimen stage that moves the specimen in a first direction (33). An optical assembly includes a scanning assembly (31) having a focusing lens (55) and a mirror (56) that moves in a second direction (32), different from the first direction, relative to the specimen stage. A light detector (13) measures an intensity of light leaving the point on the specimen. A controller (39) forms an image from the measured intensity. The reference stage (61) is positioned such that the scanning assembly moves over the reference stage in response to a command so that the controller can also make a reference measurement.