摘要:
Reduction of sulfur-containing and nitrogen-containing compounds from hydrocarbon feeds is achieved by first contacting the entire feed with a hydrotreating catalyst in a hydrotreating reaction zone operating under mild conditions to convert the labile organosulfur and organonitrogen compounds. An extraction zone downstream of the hydrotreating reaction zone separates an aromatic-rich fraction that contains a substantial amount of the remaining refractory organosulfur and organonitrogen compounds. The aromatic-lean fraction is substantially free of organosulfur and organonitrogen compounds, since the non-aromatic organosulfur and organonitrogen compounds were the labile organosulfur and organonitrogen compounds which were initially removed by mild hydrotreating. The aromatic-rich fraction is oxidized to convert the refractory organosulfur and organonitrogen compounds to oxidized sulfur-containing and nitrogen-containing hydrocarbon compounds. These oxidized organosulfur and organonitrogen compounds are subsequently removed.
摘要:
Methods for deoxygenating treated biomass-derived pyrolysis oil are provided. The treated biomass-derived pyrolysis oil is exposed to a catalyst having a neutral catalyst support such as a non-alumina metal oxide support, a theta alumina support, or both. The non-alumina metal oxide support may be a titanium oxide (TiO 2 ) support, a silicon oxide support, a zirconia oxide (ZrO 2 ) support, a niobium oxide (Nb 2 O 5 ) support, or a support having a mixture of non-alumina metal oxides. The catalyst may include a noble metal or a Group VIII non-noble metal and a Group VIB non-noble metal on the neutral catalyst support. The treated biomass-derived pyrolysis oil is introduced into a hydroprocessing reactor in the presence of the catalyst under hydroprocessing conditions to produce low oxygen biomass-derived pyrolysis oil.
摘要:
The instant invention pertains to a process for treating a feed, for example a Light Cycle Oil (LCO), having a high content of S and/ or N impurities and/ or a high content of aromatics, comprising the following steps, in particular in such an order a step of desulphurisation (HD S) and denitrification (HDN) of a feed, in particular LCO, is passed in presence of hydrogen over a catalyst, containing metals of the group VI B and VIII, leading to an effluent, optionally a step of stripping of the effluent, at least a subsequent step for dearomatization (HDA) in which at least a portion of the effluent, optionally stripped, is passed in presence of hydrogen over a catalyst comprising a combination of platinum and palladium supported on a carrier comprising silica-alumina dispersed in an alumina binder wherein the amount of alumina binder is 5-50 wt. % based on the total weight of the silica-alumina and alumina binder present in the carrier and wherein the silica-alumina comprises 5-50 wt. % of alumina based on the weight of the silica-alumina, and recovering the final load obtained, the use of a specific catalyst and a process for preparing diesel comprising the step of mixing the final effluent obtained by a process of the invention.
摘要:
Processes and systems are provided for removing contaminants from a vapor stream containing hydrocarbon and hydrogen, and can include: providing a feed stream to a first pressurized vapor liquid separator that produces a liquid stream and a vapor stream containing hydrocarbon and hydrogen, passing the vapor stream to an inlet of a particulate trap containing a plurality of treatment zones that remove contaminants from the vapor stream to produce a particulate trap effluent, and passing the particulate trap effluent directly to a catalytic hydrogenation zone. The processes and systems can also include: passing the liquid stream from the first pressurized vapor liquid separator to a second vapor liquid separator that produces an overhead vapor stream and a liquid bottoms stream, condensing the overhead vapor stream from the second vapor liquid separator to form a liquid overhead stream, routing the liquid overhead stream to the inlet of the particulate trap.