摘要:
The present invention relates to a method for identification of a protein-protein interaction of protein interaction partners in a disease-related network of proteins comprising the steps of (a) identifying nucleic acid molecules by at least partial 5'sequencing and, optionally, additionally adding recombinantly cloned and sequenced nucleic acid molecules, wherein said nucleic acid molecules encode a selection of proteins suspected to contain one or several of said interaction partners and wherein said nucleic acid molecules are annotated with a positional information; (b) in frame cloning of the nucleic acid molecules of step (a) into prey and bait vectors, wherein one copy of each nucleic acid molecule is cloned into said prey vector and a second copy of each nucleic acid molecule is cloned into said bait vector; (c) transforming a first suitable host cell with the prey vector obtained in step (b) and a second suitable host cell with the bait vector obtained in step (b), wherein said first and said second host cell have a different genetic constitution and can be mated; (d) mating the first suitable host cell of step (c) with the second suitable host cell of step (c), and expressing the proteins encoded by the nucleic acid molecules obtained in step (b); (e) selecting the mated host cell obtained in step (d) on the basis of a selection advantage which is caused by the protein-protein interaction between the protein interaction partner encoded by the nucleic acid molecule of the prey vector contained in said cell and the protein interaction partner encoded by the nucleic acid molecule of the bait vector contained in said cell; and (f) identifying with the positional information obtained in step (a) the protein interaction partners of step (e) and thereby identifying the protein-protein interaction.
摘要:
The present invention relates to a method for generating a network of direct and indirect interaction partners of a disease-related (poly)peptide comprising the steps of (a) contacting a selection of (poly)peptides suspected to contain one or several of said direct or indirect interaction partners with said disease-related (poly)peptides and optionally with known direct or indirect interaction partners of said diseaserelated (poly)peptide under conditions that allow the interaction between interaction partners to occur; (b) detecting (poly)peptides that interact with said disease-related (poly)peptide or with said known direct or indirect interaction partners of said disease-related (poly) peptide; (c) contacting (poly)peptides detected in step (b) with a selection of (poly) peptides suspected to contain one or several (poly)peptides interacting with said (poly)peptides detected in step (b) under conditions that allow the interaction between interaction partners to occur; (d) detecting proteins that interact with said (poly) peptides detected in step (b); (e) contacting said disease related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide, said (poly)peptides detected in steps (b) and (d) and a selection of proteins suspected to contain one or several (poly)peptides interacting with any of the afore mentioned (poly)peptides under conditions that allow the interaction between interaction partners to occur; (f) detecting (poly)peptides that interact with said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide or with said (poly)peptides identified in step (b) or (d); and (g) generating a (poly)peptide(poly)peptide interaction network of said disease-related (poly)peptide and optionally said known direct or indirect interaction partners of said disease-related (poly)peptide and said (poly)peptides identified in steps (b), (d) and (f). Moreover, the present invention relates to a protein complex comprising at least two proteins and to methods for identifying compounds interfering with an interaction of said proteins. Finally, the present invention relates to a pharmaceutical composition and to the use of compounds identified by the present invention for the preparation of a pharmaceutical composition for the treatment of Huntington's disease.
摘要:
The present invention relates to a targeting system comprising, preferably as distinct components, (a) a transposon which is devoid of a polynucleotide encoding a functional transposase comprising a polynucleotide of interest; and (b) a fusion protein comprising (ba) a transposase or a fragment or derivative thereof having transposase function; and (bb) a DNA targeting domain; or (bc) a (poly)peptide binding domain that binds to a cellular or engineered (poly)peptide comprising a DNA targeting domain; or (bd) a (poly)peptide comprising the DNA targeting domain of (bb) or the (poly)peptide binding domain of (bc), wherein the transposase or a fragment or derivative thereof having transposase function of (a) is joined by a linker to the domain of (bb) or to the domain of (bc) or to the (poly)peptide of (bd); or (c) a polynucleotide encoding the fusion protein of (b).
摘要:
The present invention relates to novel, specifically neuronal expressed proteins with tryptophane hydroxylase activity, nucleic acid sequences, recombinant nucleic acid molecules containing these nucleic acid sequences or vectors containing these nucleic acid sequences or the recombinant nucleic acid molecules encoding for a neuronal tryptophane hydroxylase. The invention also relates to transgenic organisms containing these nucleic acid sequences, the recombinant nucleic acid molecules or the above cited vectors. The invention moreover refers to mono- or polyclonal antibodies directed against the isolated proteins. Furthermore, the invention relates to the use of these nucleic acid sequences and proteins for diagnosis, predisposition, therapy and monitoring of neuronal diseases. Possible fields of application among others are medicine and the pharmaceutical industry.
摘要:
The invention relates to the field of immunology and immunotherapy, in particular, to adoptive T cell therapy of cancer utilizing T cell receptor (TCR)-engineered T cells. The invention provides novel methods and tools for identification and cloning of TCR, which are also applicable for identification of other receptors such as B cell receptors or antibodies. The invention provides immortalized cell lines able to induce subset specific (e.g. CD4 + or CD8 + specific) hybridization during co-culture, e.g., with primary lymphocytes of mice or men. The immortalized cells are engineered to express two mutated glycoproteins derived from the paramyxovirus family, namely hemagglutinin (H) and fusion (F) or a derivative thereof. H is a chimeric protein not able to bind to its natural ligands, fused to a targeting ligand capable of specifically binding to a specific cell surface antigen such as a lymphocytic subset-marking ligand (e.g. CD4 or CD8); fusion (F) mediates the fusion of cellular membranes of the immortalized cell line and cells, e.g., primary lymphocytes, H has bound to. The methods of the invention comprise preparing a hybridoma cell expressing a receptor, comprising steps of co-culturing a cell expressing a specific cell surface antigen and said receptor with the specific immortalized cells of the invention. The invention also relates to the hybridoma cells obtainable by said method.
摘要:
The present invention relates to the use of a DNA expression construct comprising a dumbbell- shaped circular strand of deoxyribonucleic acids and provides such a construct with a double- stranded stem and single-stranded loops located at both ends of the stem, wherein the stem comprises complementary deoxyribonucleic acids of the circular strand with a promotor sequence, a coding sequence and a termination signal to be administered by jet injection for the treatment of cancer.
摘要:
The present invention refers to hyperactive variants of a transposase of the transposon system Sleeping Beauty (SB). The invention further refers to corresponding nucleic acids producing these variants, to a gene transfer system for stably introducing nucleic acid(s) into the DNA of a cell by using these hyperactive variants of a transposase of the transposon system Sleeping Beauty (SB) and to transposons used in the inventive gene transfer system, comprising a nucleic acid sequence with flanking repeats (IRs and/or RSDs). Furthermore, applications of these transposase variants, the transpsoson, or the gene transfer system are also disclosed such as gene therapy, insertional mutagenesis, gene discovery (including genome mapping), mobilization of genes, library screening, or functional analysis of genomes in vivo and in vitro. Finally, pharmaceutical compositions and kits are also encompassed.