Abstract:
A method and apparatus for obtaining a color mapping of a dental object. Illumination is directed toward the object over at least first, second, and third wavelength band, one band at a time. An image of the dental object is captured at each wavelength band to form a set of images of the dental object. For pixels in the captured set of images, an image data value for the pixel corresponds to each of the wavelength bands and calculates interpolated image data values proportional to the spectral reflectance of the dental object, according to the obtained image data values and according to image data values obtained from a reference object at the wavelength bands. Spectral distribution data for a viewing illuminant is obtained and the visual color of the dental object reconstructed according to the calculated interpolated image data values and the obtained spectral distribution of the viewing illuminant.
Abstract:
Die Erfindung betrifft ein Verfahren (100) zur Herstellung von Farbelementen eines Farbschlüssels. Dazu werden zunächst Farbwerte bekannter Farbelemente (15) von Farbschlüsseln (10) mit ähnlichen Helligkeitswerten, Farbtönen und Chromata erfasst. In einem weiteren Verfahrensschritt werden die Farbwerte jedes neuen Farbelementes unter Vergrößerung eines Farbabstands (16) zwischen den Helligkeitswerten, Farbtönen und Chromata der zuvor erfassten Farbwerte bestimmt.
Abstract:
A device (100) for determining the surface topology and associated colour of a structure (26), such as a teeth segment, includes a scanner (100,1525) for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means (68) for providing colour data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor (24) combines the colour data and depth data for each point in the array, thereby providing a three-dimensional colour virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated colour of a structure is also provided.
Abstract:
The referencing or calibration phantom (1) has at least a partial surface with at least two different colors or two shades of the same color. The surface is at least partially opaque.
Abstract:
A device for determining the surface topology and associated colour of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing colour data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the colour data and depth data for each point in the array, thereby providing a three-dimensional colour virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated colour of a structure is also provided.
Abstract:
The image processing system is applied to dentistry, for example, and performs photography of the teeth of a patient while causing a plurality of illumination light LEDs of different wavelengths to emit light by means of a photography device(1A) when producing a crown repair or denture of the patient, whereby image data are acquired. The image data are transmitted to a dental filing system (2A) constituting a processing device where color reproduction data are determined through computation. In addition, color reproduction data are transmitted to the dental technician's office (55) via a public switched network. Therefore, a repair material compound ratio calculation database (56) is searched and the compound data for a material that matches the hue of the patient's teeth are found, whereby a crown repair or denture or the like that very closely matches the color of the patient's teeth is produced.
Abstract:
In a method, computer program, and system a dental target, such as a tooth, is located within a digital dental image. A reference object that was placed in the patient's mouth is segmented within a digital dental image to provide a segmented reference. The reference object has a predetermined size dimension. A window is segmented in the dental image at the position of the dental target. The segmented reference defines the relative size and location of the window, prior to the segmenting of the window.
Abstract:
A method for providing data useful in procedures associated with the oral cavity, in which at least one numerical entity representative of the three-dimensional surface geometry and colour of at least part of the intra-oral cavity is provided and then manipulated to provide desired data therefrom.