摘要:
A vertical cavity laser (Figure 3 )includes an optical cavity (116) adjacent to a first mirror (112), the optical cavity (116) having a semiconductor portion (130) and a dielectric spacer layer (160). A dielectric DBR (114) is deposited adjacent to the dielectric spacer layer (160). The interface (162) between the semiconductor portion (130) of the optical cavity (116)and the dielectric spacer layer (160) is advantageously located at or near a null (164) in the optical standing wave intensity pattern (166) of the vertical cavity laser ( Figure 3 ) to reduce the losses or scattering associated with that interface (162).
摘要:
A vertical cavity surface emitting laser having a GaAs/AI(Ga)As DBR mirror over an InP layer. A first GaAs layer (126) is MOCVD grown on an InP layer (124) at a growth temperature of between 400 and 450 °C. Then, a second GaAs layer (128) is grown by MOCVD at a growth temperature of about 600 °C over the first GaAs layer (126). A GaAs/AI(Ga)As DBR mirror (132) is then grown over the second GaAs layer. Beneficially, an insulating layer (130) is disposed between the second GaAs layer (128) and the GaAs/AI(Ga)As DBR mirror (132). The insulating layer includes an opening (131) that exposes the second GaAs layer (128). Then, the GaAs/AI(Ga)As DBR mirror (132) is grown by lateral epitaxial overgrowth. The lower DBR (116) can be comprised of a material that provides an acceptable lattice match with InP layers. A tunnel junction can be formed over an InP active region.
摘要:
A vertical cavity surface emitting laser [100] with a current guide comprised of an ion (160) implant region and an oxide structure (140). The oxide structure (140) is beneficially formed first, then, a gain guide ion implant region (160) is formed in or below the oxide structure (140). The ion (160) implant region extends into an active region (22). The energy and dosage used when forming the ion (160) implant gain guide can be selected to control the lateral sheet resistance and the active region's (22) non-radiative recombination centers.
摘要:
An organic vertical cavity laser light producing device (10) includes a bottom dielectric stack (30) reflective to light over a predetermined range of wavelengths; an organic active region (40) for producing laser light; and a top dielectric stack (50) spaced from the bottom dielectric stack (30) and reflective to light over a predetermined range of wavelengths. The device also includes the active region (40) in which is contained one or more periodic gain region(s) (100) and organic spacer layers (110) disposed on either side of the periodic gain region(s) (100) and arranged so that the periodic gain region(s) (100) is aligned with the antinodes of the device's standing wave electromagnetic field.
摘要:
A vertical-cavity surface-emitting laser (100) comprises one or more quantum well layers (107) and one or more barrier layers (108) to define a gain region (106), a first mirror means (103) and a second mirror means (102), wherein the first and second mirror means define a resonator. Moreover, the vertical-cavity surface-emitting laser further comprises a first indium phosphide layer (109) adjacent to the gain region (106) and a second indium phosphide layer (110) adjacent to the gain region (106) to define a laser cavity (112).
摘要:
Le dispositif comporte plusieurs cavités résonantes de longueurs différentes, de manière à émettre sur plusieurs longueurs d'onde différentes (λ1, λ2, λ3 ou λ4), dépendant de la longueur de la cavité correspondante. Chaque cavité résonante comporte une calotte convexe (6), de préférence hémisphérique, en matériau transparent pour les longueurs d'onde émises. La calotte convexe (6) définit, à une extrémité de la cavité, une surépaisseur, de longueur li, qui permet de faire varier la longueur (I+Ii) de la cavité correspondante. Les calottes sont, de préférence, obtenues par refonte de galettes de dimensions prédéterminées, par exemple en sélénium, sur le matériau constituant les cavités.
摘要:
A monolithic vertical optical cavity device (100) has a bottom Distributed Bragg Reflector (DBR), a quantum well (QW) region consisting of at least one active layer grown on top of the bottom DBR by using a Selective Area Epitaxy (SAE) mask such that the active layer or layers exhibit a variation in at least one physical parameter in a horizontal plane perpendicular to the vertical direction and a top DBR deposited on top of the QW region (70). The device has a variable Fabry-Perot distance (82) defined along the vertical direction between the bottom DBR (50) and the top DBR (76) and a variable physical parameter of the active layer.