摘要:
A method for recharging a crucible with polycrystalline silicon comprises adding flowable chips to a crucible used in a Czochralski-type process. Flowable chips are polycrystalline silicon particles made from polycrystalline silicon prepared by a chemical vapor deposition process, and flowable chips have a controlled particle size distribution, generally nonspherical morphology, low levels of bulk impurities, and low levels of surface impurities. Flowable chips can be added to the crucible using conventional feeder equipment, such as vibration feeder systems and canister feeder systems.
摘要:
The present invention is a low-contaminate work surface for processing semiconductor grade silicon. The work surface is comprised of a parallel array of silicon elements forming a planar surface. The silicon elements are of comparable purity with the semiconductor grade silicon to be processed, thus minimizing contact contamination. In an additional embodiment of the present invention, the low-contaminate work surface is part of a work station which provides for initial screening and sizing of the semiconductor grade silicon being processed.
摘要:
A process for the deposition of pure semiconductor silicon by reductive chemical vapor decomposition of a precursor silane, the process comprising: (1) forming and depositing semiconductor silicon on a heated substrate; (2) separating a mixture enriched in lower-boiling silanes from the effluent gases from the decomposition/ deposition reactor; (3) combining the mixture enriched in lower-boiling silanes with additional tetrachlorosilane, so that there is present in the combination less than about 1.0 mole hydrogen bonded to silicon per mole of total silicon; (4) passing the combination through a bed of a solid disproportionation catalyst to facilitate disproportionation of hydrogen-containing silanes and chlorine-containing silanes to produce a stream that is reduced in content of silane, chlorosilane and dichlorosilane and increased in content of trichlorosilane; and (5) isolating and separating the trichlorosilane.
摘要:
A method for analyzing and quantifying the individual trace metals content of a semiconductor material in the low to sub-parts per billion (ppba) range. The method comprises (A) float-zone refining of a sample of the semiconductor material creating a melt zone containing essentially all the trace metals of the sample; (B) cooling the melt zone to form a solid zone concentrated in trace metals; (C) separating the solid zone concentrated in trace metals from the sample of the semiconductor material; (D) converting the solid zone concentrated in trace metals into a form suitable for trace metals analysis; (E) analyzing the solid zone with known trace metals analytical techniques; and (F) calculating total trace metals from these analytical results. This method can also be applied to the small tip which forms on the side of the solid zone.
摘要:
A process for preparing a product including a monohydrogentrihalosilane is disclosed. The process includes the steps of: 1) initially charging a reactor with a contact mass including both fresh silicon and recycled contact mass, where the recycled contact mass is obtained from during or after a production phase of an inorganic Direct Process reaction for production of a monohydrogentrihalosilane; and thereafter 2) feeding to the reactor a hydrogen halide and additional fresh silicon, thereby forming the product.
摘要:
Methods of forming and analyzing doped monocrystalline silicon each comprise the steps of providing: a vessel, particulate silicon, a dopant, and a float-zone apparatus. The vessel for each method comprises silicon and defines a cavity. The methods each further comprise the steps of combining the particulate silicon and the dopant to form treated particulate silicon, and disposing the treated particulate silicon into the cavity of the vessel. The methods yet further comprise the step of float-zone processing the vessel and the treated particulate silicon into doped monocrystalline silicon with the float-zone apparatus. The analytical method further comprises the step of providing an instrument. The analytical method yet further comprises the steps of removing a piece from the doped monocrystalline silicon, and determining the concentration of the dopant in the piece with the instrument. The methods are useful for forming and analyzing monocrystalline silicon having various types and/or concentrations of dopant(s).
摘要:
A manufacturing apparatus for deposition of a material on a carrier body and an electrode for use with the manufacturing apparatus are provided. The manufacturing apparatus includes a housing that defines a chamber. The housing also defines an inlet for introducing a gas into the chamber and an outlet for exhausting the gas from the chamber. At least one electrode is disposed through the housing with the electrode at least partially disposed within the chamber. The electrode includes a shaft having a first end and a second end, and a head disposed on one of the ends of the shaft. The head of the electrode has an exterior surface having a contact. An exterior coating is disposed on the exterior surface of the electrode, outside of the contact region. The exterior coating has a greater wear resistance than nickel as measured in mm 3 /N*m.
摘要:
A manufacturing apparatus for deposition of a material on a carrier body and an electrode for use with the manufacturing apparatus are provided. The manufacturing apparatus includes a housing that defines a chamber. The housing also defines an inlet for introducing a gas into the chamber and an outlet for exhausting the gas from the chamber. At least one electrode is disposed through the housing with the electrode at least partially disposed within the chamber. The electrode has an exterior surface. The exterior surface has a contact region that is adapted to contact a socket. A contact region coating is disposed on the contact region of the electrode for maintaining electrical conductivity between the electrode and the socket. The contact region coating has an electrical conductivity of at least 7x10 6 Siemens/meter at room temperature and a greater wear resistance than nickel as measured in mm 3 /N*m.