摘要:
A liquid ejecting head for a liquid ejecting apparatus for performing a recording operation by ejecting liquid from the liquid ejecting head includes as essential components a base plate having a plurality of liquid ejecting elements, and a grooved member having a plurality of grooves (4) formed thereon corresponding to the liquid ejecting elements. The grooved member is connected to the base plate and composed of a grooved element and a supporting member (2). A liquid ejecting apparatus operable for performing a recording operation includes as essential components a liquid ejecting head of the foregoing type and a signal supplying unit for supplying a series of signals to the liquid ejecting head for activating a plurality of liquid ejecting elements. A method of producing a liquid ejecting head of the foregoing type is practices by way of the steps of preparing a base plate having a plurality of liquid ejecting elements, forming a plurality of supporting portions (1) on a supporting member (2), forming a grooves member including a grooved element (3), and then connecting the grooved element (3) to a resin member constituting a part of the grooved member via the supporting portions (1).
摘要:
A wear resistant coating may comprise an amorphous metal comprising at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and a metalloid. An amorphous metal may comprise at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and a metalloid. A coating may comprise at least one refractory metal, at least two elements selected from periods 4, 5, 6, 9, and 10, and silicon. In some examples, the amorphous metal is TaWSi. In one example, the refractory metals may comprise Niobium, Molybdenum, Tantalum, Tungsten, Rhenium, or combinations thereof.
摘要:
An inkjet nozzle device includes a main chamber having a floor, a roof and a perimeter wall extending between the floor and the roof. The main chamber includes: a firing chamber having a nozzle aperture defined in the roof and an actuator for ejection of ink through the nozzle aperture; an antechamber for supplying ink to the firing chamber, the antechamber having a main chamber inlet defined in the floor; and a baffle structure partitioning the main chamber to define the firing chamber and the antechamber, the baffle structure extending between the floor and the roof. The firing chamber and the antechamber have a common plane of symmetry.
摘要:
A fluid ejection device is described. In an example, a device includes a substrate having a chamber formed thereon to contain a fluid. A metal layer includes a resistor under the chamber having a surface thermally coupled to the chamber. At least one layer is deposited on the metal layer. A polysilicon layer is under the metal layer comprising a polysilicon structure under the resistor to change topography of the resistor such that the surface is uneven.
摘要:
The invention described in the specification relates to an ink jet printhead structure having semiconductor substrate (12) containing energy imparting devices for ejecting ink through nozzle holes in a nozzle plate (26), to a method for making a printhead structure and to a printer cartridge containing the printhead structure. In order to reduce stresses induced in the structure during manufacturing and/or use thereof, a polymeric layer (22) is disposed between the semiconductor substrate and nozzle plate which contains expansion void spaces or valleys sufficient to inhibit stresses in the structure during a process for bonding the nozzle plate to the polymeric layer thereby reducing misalignment and warpage problems associated with conventional printhead structures.
摘要:
An ink jet recording head comprises ink paths (5) communicated with ink discharge ports (7) for discharging ink, and heat generating portions (3) arranged on the inner wall faces of the ink paths (5) for generating thermal energy utilized for discharging ink from the discharge ports (7). For this ink jet recording head, liquid-repellent treatment is processed only on the regions that correspond to the heat generating portions of the inner wall faces of the ink paths (5). With the liquid-repellent treatment processed only on the regions corresponding to the heat generating portions on the inner wall faces of the ink paths, it is made difficult for the refractory substances that may be brought about by the decomposition of colorant or the like contained in ink to be fixed on the regions corresponding to the heat generating portions. As a result, the heat of each heat generating device (3) is transferred to ink evenly to make stable ink discharges obtainable for the provision of recorded images of higher quality.