Abstract:
A liquid ejecting head (1) includes a flow channel forming substrate (10) that is provided with a space constituting a pressure generating chamber (12) which communicates with nozzle openings (21), a vibration plate (50) that is stacked on one surface of the flow channel forming substrate and seals the space, and a piezoelectric element (300) that includes a first electrode (60), a piezoelectric layer (70), and a second electrode (80) sequentially stacked on a surface of the vibration plate opposite to the flow channel forming substrate, in which the first electrode is formed, in which at least a width of a first direction along the opposite surface is narrower than the space in a region corresponding to the space, the piezoelectric layer is stacked so as to overlap the first electrode and at least a part of the vibration plate in the region corresponding to the space, the second electrode is stacked so as to overlap the piezoelectric layer in the region corresponding to the space, and as a thickness of a stacked direction of the piezoelectric element is a thickness of the piezoelectric layer, a first thickness (D1) of the piezoelectric layer of a part positioned on the first electrode and a second thickness (D2) of the piezoelectric layer of a part positioned on the vibration plate satisfy a relationship of the first thickness (D1) > the second thickness (D2).
Abstract:
An inkjet printhead assembly comprising an ink supply manifold: printhead integrated circuits and a connector film for supplying power to drive circuits in the printhead integrated circuits. Each prithead integrated circuit has a frontside comprising the drive e circuitry and inkjet nozzle assemblies, a backside attached to the ink supply manifold, and ink supply channels providing fluid communication between the backside and the inkjet nozzle assemblies. A connection end of the connector film is sandwiched between part of the ink supply manifold and the printhead integrated circuits.
Abstract:
In one example, a process for making a micro device assembly includes placing a micro device on a front part of a printed circuit board, molding a molding on the printed circuit board surrounding the micro device, and then forming a channel to the micro device in a back part of the printed circuit board.
Abstract:
An actuator as a piezoelectric device has a bonding layer (24) including titanium (Ti), a lower electrode (25) including platinum (Pt), a piezoelectric thin film (26), and an upper electrode formed in this order on a substrate. Ti particles (24a) precipitate from the bonding layer (24) onto the lower electrode (25). Pt that forms the lower electrode (25) has a crystal grain size of 75 nm to 150 nm.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A piezoelectric device includes a first substrate that includes a piezoelectric element (32) provided in a first region where bending deformation is allowed and an electrode layer (39) electrically connected to the piezoelectric element (32), a second substrate in which a bump electrode (43) abutting and conducting the electrode layer (39), and having elasticity is formed, and which is disposed so as to face the piezoelectric element (32) with a predetermined space, and adhesive (43) that bonds the first substrate and the second substrate in a state where a distance between the first substrate and the second substrate is maintained. The adhesive (43) has a width in a center portion in a height direction relative to a surface of the first substrate or the second substrate greater than a width in end portions in the same direction.
Abstract:
In one example, a process for making a micro device assembly includes placing a micro device on a front part of a printed circuit board, molding a molding on the printed circuit board surrounding the micro device, and then forming a channel to the micro device in a back part of the printed circuit board.
Abstract:
A method for manufacturing a liquid jetting apparatus, which is provided with: a flow passage formation member including a pressure chamber; and a piezoelectric actuator having a vibration film provided on the flow passage formation member, a piezoelectric film arranged on the vibration film to correspond to the pressure chamber, first and second electrodes arranged on different surfaces of the piezoelectric film, a first protective film covering the piezoelectric film, a wire connected to the second electrode, and a second protective film covering the wire, includes: forming a first protective film on the vibration film to cover the piezoelectric film and the second electrode; forming the wire and the second protective film to cover the wire with the first protective film covering the piezoelectric film and the second electrode; and removing a part, of the first protective film, that overlaps with the second electrode, after forming the second protective film.