Abstract:
A windowpane system (101) comprising: a windowpane (102); and at least one primary light source (105); each primary light source (105) being arranged so that light (106) from the primary light source (105) passes into the windowpane (102) through a first surface of the windowpane (102), the light (106) then travelling within the windowpane until it has undergone total internal reflection from one or more second surfaces of the windowpane a plurality of times, wherein at least some of the light from the primary light source is absorbed by the windowpane as the light from the primary light source passes through the windowpane.
Abstract:
Zur Analyse eines in einem Anlagenteil (1) geführten Prozessgases (2) wird das Licht (9) einer Lichtquelle (7) nach Durchstrahlen des Prozessgases (2) mittels eines Detektors (8) detektiert und in einer nachgeordneten Auswerteeinrichtung (18) hinsichtlich der Absorption in dem Prozessgas (2) zu einem Analysenergebnis (19) ausgewertet. Zwischen der Lichtquelle (7) und dem Anlagenteil (1) sowie zwischen dem Detektor (8) und dem Anlagenteil (1) sind zu dem Inneren des Anlagenteils (1) hin offene Kammern oder Spülrohre (10, 11) vorhanden, die mit einem Spülgas (12) beströmt werden. Um eine weitgehende Kompensation von durch die Spülung verursachten Messfehlern zu ermöglichen, wird der Volumenstrom des Spülgases (12) moduliert und der Einfluss des Spülgases (12) auf das Analysenergebnis (19) anhand von durch die Modulation hervorgerufenen Änderungen der detektierten Absorption bestimmt und aus dem Analysenergebnis (19) entfernt.
Abstract:
An apparatus and method for determining optical properties of an object includes a tunable monochromatic light source and an optical system for illuminating at least one point of the object with light from the light source, and collecting light reflected from the object. A biaxial birefringent crystal intercepts a beam of light reflected from the object and propagates the beam along an optical axis of the crystal and transforms the beam of reflected light to a ring of light having a periphery, each point of which has a different polarization plane. A detector array detects respective points along the periphery of the ring and a processing unit is coupled to the detector and is responsive to signals thereby for determining optical properties of the object.
Abstract:
The present invention relates to a new optical tool for detecting and quantifying pyruvate in samples, in tissues and in cellular and subcellular compartments, with high spatial and temporal resolution, this is a Forster Resonance Energy Transfer (FRET)-based pyruvate sensor comprising a bacterial PdhR transcription factor between any suitable donor and acceptor fluorescent proteins moieties. The invention also relates to methods of use of this novel optical tool for the quantification of the activity of pyruvate transporters, for the quantification of the rates of cellular pyruvate production and consumption, and for the direct quantification of the rate of mitochondrial pyruvate consumption in intact cells.
Abstract:
Embodiments of the present invention provide gem identification method and apparatus. The method comprises the steps: (a) placing a sample to be detected over a light transmission hole formed on a carrying surface of an object table and emitting, by an optical probe disposed below the carrying surface, an exciting light onto the sample through the light transmission hole and then collecting a Raman scattered light from the sample by the optical probe; (b) acquiring a Raman spectrogram of the sample from the collected Raman scattered light from the sample; and (c) comparing the Raman spectrogram with a reference Raman spectrogram library for gems to identify the sample. The method and apparatus may achieve effective, convenient and accurate inspections of the gems.
Abstract:
A method of assessing a tissue sample includes the steps of:: 1) splitting source electromagnetic radiation into: a) sample arm radiation directed in a Z direction toward a sample thereby illuminating the sample at a first selected XY coordinate pair of the sample, and b) reflector arm radiation directed toward a reflector so that the reflector arm radiation travels a path length;
2) interfering sample-scattered electromagnetic radiation with reflector-reflected electromagnetic radiation thereby establishing an interference pattern associated with the sample; 3) comparing the sample interference pattern to a reference interference pattern; and 4) reaching a conclusion about the sample based on the comparison.
Abstract:
Es wird ein optoelektronischer Sensor (10) zur Erfassung von Objekten in einem Überwachungsbereich (20) angegeben, der Folgendes aufweist: eine Frontscheibe (38), einen Lichtsender (12) zum Aussenden eines Lichtstrahls (16), eine bewegliche Ablenkeinheit (18) zur periodischen Abtastung des Überwachungsbereichs (20) mit dem Lichtstrahl (16), einen Lichtempfänger (26) zum Erzeugen eines Empfangssignals aus dem von den Objekten remittierten Lichtstrahl (22), mindestens einen Testlichtsender (42), mindestens einen Testlichtempfänger (44) und mindestens einen Testlichtreflektor (48), die einen Testlichtpfad (46a-b) durch die Frontscheibe (38) aufspannen, und eine Auswertungseinheit (32), die dafür ausgebildet ist, aus dem Empfangssignal Informationen über die Objekte in dem Überwachungsbereich (20) zu gewinnen sowie eine beeinträchtigte Lichtdurchlässigkeit der Frontscheibe (38) aus einem Testlichtsignal zu erkennen, das der Testlichtempfänger (44) aus von dem Testlichtsender (42) ausgesandtem und an dem Testlichtreflektor (48) reflektierten Testlicht erzeugt. Dabei ist der Testlichtreflektor (48) mit der Ablenkeinheit (18) mitbewegt angeordnet.
Abstract:
The invention relates to an optical device (110) and a corresponding detection apparatus (100) that may for example be used for monitoring the replication of nucleotide sequences at a surface. In a preferred embodiment, the optical device (110) comprises a waveguide substrate (130) with a wiregrid (140) on a bottom surface (132), wherein apertures (141) of the wiregrid are in at least one direction (x) smaller than a characteristic wavelength (λ) of input light (IL). Moreover, a diffractive structure (120) is disposed on the opposite surface (131) of the substrate (130) for coupling input light (IL) into the substrate (130) such that constructive interference occurs at the apertures (141). Thus evanescent waves can be generated with high efficiency in these apertures, allowing for example for a surface-specific excitation of fluorescence (FL) that can be sensed by a detector (160).