摘要:
A method for manufacturing a MEMS double-layer suspension microstructure comprises steps of: forming a first film body (310) on a substrate (100), and a cantilever beam (320) connected to the substrate (100) and the first film body (310); forming a sacrificial layer (400) on the first film body (310) and the cantilever beam (320); patterning the sacrificial layer (400) located on the first film body (310) to manufacture a recessed portion (410) used for forming a support structure (520), the bottom of the recessed portion (410) being exposed of the first film body (310); depositing a dielectric layer (500) on the sacrificial layer (400); patterning the dielectric layer (500) to manufacture a second film body (510) and the support structure (520), the support structure (520) being connected to the first film body (310) and the second film body (510); and removing the sacrificial layer (400) to obtain the MEMS double-layer suspension microstructure.
摘要:
A method of manufacturing a plurality of through-holes (132) in a layer of material by subjecting the layer to directional dry etching to provide through-holes (132) in the layer of material; For batch-wise production, the method comprises - after a step of providing a layer of first material (220) on base material and before the step of directional dry etching, providing a plurality of holes at the central locations of pits (210), - etching base material at the central locations of the pits (210) so as to form a cavity (280) with an aperture (281), - depositing a second layer of material (240) on the base material in the cavity (280), and - subjecting the second layer of material (240) in the cavity (280) to said step of directional dry etching using the aperture (281) as the opening (141) of a shadow mask.
摘要:
In a method for fabricating an electrostatic capacitance-type acceleration sensor having a capacitor which electrostatic capacitance between a movable electrode and a fixed electrode changes according to the displacement of the movable electrode, the method includes: a step of forming a groove on at least one of the surface of an insulative substrate and the surface of a semiconductor substrate; a step of forming a hole in the semiconductor substrate so as to penetrate the semiconductor substrate at a position communicating with a passage formed by the groove; and a step of forming an electrode extraction hole in the insulative substrate so as to penetrate the insulative substrate, at a position communicating with the passage formed by the groove.
摘要:
The invention relates to a device comprising a base substrate(700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from said component (702). It also comprises spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via said spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) comprises vias (710) comprising metal for providing electrical connection through said capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
摘要:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.