Abstract:
An imaging device (10) for biochemical or medical samples, the pulse mode light source (15) of which incorporates flash lamps (27) and a rotating mirror (28) in an inclined position, the said mirror reflecting the light emitted by each flash lamp in turn along the same optical path to the sample (17). The flash lamps (27) are switched on alternately in phases and synchronised with the rotating mirror (28) and the emission light chopper (13), which comprises two rotating discs (13a, 13b). The turning mirror (21) directs the light at the sample (17) from above and/or below, in which case a double-acting transparent scattering plate (20) can be used.
Abstract:
An imaging device (10) for biochemical or medical samples, the pulse mode light source (15) of which incorporates flash lamps (27) and a rotating mirror (28) in an inclined position, the said mirror reflecting the light emitted by each flash lamp in turn along the same optical path to the sample (17). The flash lamps (27) are switched on alternately in phases and synchronised with the rotating mirror (28) and the emission light chopper (13), which comprises two rotating discs (13a, 13b). The turning mirror (21) directs the light at the sample (17) from above and/or below, in which case a double-acting transparent scattering plate (20) can be used.
Abstract:
A spectrometer includes a pair of crossed reflective gratings (20,22) to effect a spectrally dispersed beam that is focussed to an array detector. The second grating (22) is a plural grating with a surface formed of a first portion and a second portion. The first portion has a groove density for effecting ultraviolet in the dispersed beam. The second portion has a groove density for effecting visible radiation in the dispersed beam. A shutter (46) blocks or exposes the second portion of the grating surface so as to select the first spectral range or the second spectral range for detection. The plural grating surface preferably may be contoured to compensate for aberrations in focussing of the beam to the detector. A computer may be used for selecting spectral lines for analysis, particularly selecting such lines in the second range that are not interfered with by the first range.
Abstract:
A multichannel optical monitoring system for monitoring the spectral transmission of a plurality of samples. A plurality of light beams (16) are generated and a plurality of optical monitoring stations are arranged along a pathway, each station having an optical path formed by one of the light beams transverse to the pathway and along which optical characteristics are monitored. A drive mechanism moves a plurality of reaction wells (7), each containing a reaction volume, along the pathway from station to station so that respective reaction volumes dwell periodically in each optical path for transmitting a respective one on the light beams, a diffraction grating (19) is arranged for diffracting the beams transmitted by respective ones of the reaction volumes. The diffracted beams are focussed and at least one array of the photodetectors (23) is positioned for receiving the diffracted and focussed beams for producing electrical signals representing the spectral content of the diffracted beams. An electronic circuit detects the electrical signals of the array, which signals may be stored for further processing and evaluation.
Abstract:
In known spectrophometers, a single light source is used to illuminate both a sample and a reference. A single detector is used to detect the light at both the sample and the reference. A chopper wheel having aperture portions is used to allow the light to pass through a selected filter in the apertures. However, in such devices, the beams from the sample and the reference arrive at the detector at the same time and movable shutters need to be employed. Described herein is a spectrophotometer (10) comprising a single light source (12), a single detector (14), optics (30, 36, 340, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 92, 100) for dually and alternatively reading a sample (94) and a reference (96), and which employs only one moving part. That moving part is a chopper (42) containing multiple pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f), each filled with a unique bandpass filter to select wavelengths to specifically illuminate the sample (94) or reference (96). To inform the spectrophotometer (10) whether and when it is reading the sample (94) or the reference (96), energy relay means (70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, 70i, 70j, 70k, 70l) are provided between an energy emitter (80) and an energy detector (82) in an amount of at least twice the number of the pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f).
Abstract:
In known spectrophometers, a single light source is used to illuminate both a sample and a reference. A single detector is used to detect the light at both the sample and the reference. A chopper wheel having aperture portions is used to allow the light to pass through a selected filter in the apertures. However, in such devices, the beams from the sample and the reference arrive at the detector at the same time and movable shutters need to be employed. Described herein is a spectrophotometer (10) comprising a single light source (12), a single detector (14), optics (30, 36, 340, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 92, 100) for dually and alternatively reading a sample (94) and a reference (96), and which employs only one moving part. That moving part is a chopper (42) containing multiple pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f), each filled with a unique bandpass filter to select wavelengths to specifically illuminate the sample (94) or reference (96). To inform the spectrophotometer (10) whether and when it is reading the sample (94) or the reference (96), energy relay means (70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, 70i, 70j, 70k, 70l) are provided between an energy emitter (80) and an energy detector (82) in an amount of at least twice the number of the pass-through apertures (60a, 60b, 60c, 60d, 60e, 60f).
Abstract:
Système de contrôle optique à canaux multiples permettant de contrôler la transmission spectrale d'une pluralité de prélèvements. On génère une pluralité de faisceaux lumineux (16) et on positionne une pluralité de stations de contrôle optiques le long d'une trajectoire, chaque station possèdant un trajet optique formé par un des faisceaux lumineux placé transversalement à la trajectoire et suivant lequel les caractéristiques optiques sont contrôlées. Un mécansime d'entraînement déplace une pluralité de réservoir de réaction (7), chacun contenant un volume de réaction, le long de la trajectoire station par station de telle sorte que les volumes de réaction respectifs s'arrêtent momentanément périodiquement en face de chaque trajet optique pour transmettre l'un de ces volume sur les faisceaux lumineaux. Un réseau de diffraction (19) est installé de manière à diffracter les faisceaux transmis par chacun des volumes de réaction respectifs. Les faisceaux diffractés sont focalisés et au moins un ensemble de photodétecteurs (23) est positionné de façon à recevoir les faisceaux diffractés et focalisés afin de produire des signaux électriques représentant la teneur spectrale des faisceaux diffractés. Un circuit électronique détecte les signaux électriques de l'ensemble, lesquels signaux peuvent être stockés pour traitement et évaluation ultérieurs.
Abstract:
Un appareil permettant d'introduire et de retirer plusieurs filtres d'un chemin optique (16) et de déterminer à tout moment la relation de position instantanée de chaque filtre par rapport au chemin optique comprend un ensemble de filtres (36) monté sur un support (22) qui est fixé à un système piézoélectrique résonnant, et comprend aussi des pistes de référence (42) situées également sur le support et s'étendant dans le sens du mouvement oscillatoire et comprenant une séquence d'indices binaires progressant dans le sens du mouvement oscillatoire. Les pistes de référence sont lues optiquement pour produire une série de signaux électriques binaires qui sont traités pour donner la position instantanée du support et des filtres par rapport à un chemin optique fixé.