摘要:
Group size indications may be distributed from a base station to a mobile station in the form of assignment-advanced-MAP transmit control signaling. The signaling control information may be sent to a station, such as a mobile station, using a table that indicates the size of a group based on coding rates, such as one-half and one-quarter coding rates. Waste may be controlled by determining a size based on using an unoccupied resource in a group that is adjacent to data resource for data transmission by the station. However, an unoccupied resource in a group that is not adjacent to a data resource is not used for data transmission and is, therefore, wasted.
摘要:
A base station can obtain channel quality conditions for mobile devices in a scheduling interval. The base station can identify a channel quality, a target transmission scheme, and a transmission power level for each of the mobile devices. The base station can assign a unique orthogonal CDMA code. The base station can force the mobile devices to transmit K repeated bursts of uplink data such that each of the mobile devices has a rotated phase shift based on the unique orthogonal CDMA code assigned to each of the mobile devices with each of the mobile devices multiplexed on a same physical channel using an overlaid CDMA operation. The base station can process K repeated bursts that are multiplexed on the same physical channel using the overlaid CDMA operation. The base station can separate the mobile devices according to the unique orthogonal CDMA code and use in-phase (I) and quadrature-phase (Q) (IQ) accumulation according to combine the K repeated bursts.
摘要:
Techniques for random access (RA) in a cellular internet-of-things (CIOT) are discussed. An example apparatus configured to be employed within a User Equipment (UE), comprises a receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry is configured to receive RA resource allocation information via one of a system information message or a downlink control information (DCI) message. The processor is operably coupled to the receiver circuitry and configured to: select a RA preamble sequence; generate a payload; and spread the payload via a spreading sequence. The transmitter circuitry is configured to transmit, based on the RA resource allocation information, a RA message comprising the RA preamble sequence and the payload, wherein the RA message is transmitted in a RA slot. The receiver circuitry is further configured to receive a response comprising a device identity of the UE and one of an uplink (UL) grant or a RA reject message.
摘要:
An evolved Node B (eNB) and method for coherent coordinated multipoint transmission with per CSI-RS feedback are generally described herein. The eNB may configure a first cooperating point and a second cooperating point to jointly transmit a multi-node channel-state information (CSI) reference signal (RS) (CSI-RS) in predetermined resource elements of a resource block. The eNB may receive CSI reports as feedback from user equipment (UE). The CSI reports may include a precoding matrix indicator (PMI) indicating relative phase information between the cooperating points based on the multi-node CSI-RS. The CSI reports for the multi-node CSI-RS may be restricted to a PMI of rank-1. The eNB may configure the cooperating points for a coherent joint transmission to the UE based at least on the relative phase information. The coherent joint transmission may also be jointly beamformed based on single-node PMIs.
摘要:
Embodiments of an Evolved Node-B (eNB) to support Mission-Critical Machine Type Communication (MC-MTC) User Equipments (UEs) are disclosed herein. During a transmission notification (TN) monitoring period, the eNB may monitor for TN signals from MC-MTC UEs. When a presence of TN signals is detected, the eNB may refrain from allocation of dedicated MC-MTC traffic resources to other UEs for transmission during a traffic period. In response to a detection of an absence of TN signals from the first group of MC-MTC UEs during the TN monitoring period, the eNB may allocate the dedicated MC-MTC traffic resources to the other UEs for transmission during the traffic period. Starting times of the traffic period and the TN monitoring period may be spaced apart by a predetermined time difference. In some embodiments, the predetermined time difference for MC-MTC UEs may be not greater than 10 milliseconds.
摘要:
A technology that is operable to release a licensed shared access (LSA) spectrum allocation in a communications network is disclosed. In one embodiment, an evolved node B (eNode B) is configured with circuitry configured to receive, from a spectrum release module located in an evolved packet core (EPC) of the communications network, a spectrum release message requesting the eNode B release one or more selected segments of an LSA spectrum. LSA spectrum release parameters are evaluated for releasing the one or more selected segments of the LSA spectrum. A LSA spectrum release schedule is determined based on the LSA spectrum release parameters. Selected secondary cells (SCells) are deactivated in the communications network based on the LSA spectrum release schedule to release the one or more selected segments of the LSA spectrum.