Abstract:
The present invention relates to a method for characterizing samples having fluorescent particles, comprising the steps of: (a) monitoring intensity fluctuations of fluorescence emitted by the particles in at least one measurement volume by detecting sequences of photon counts by at least one photon detector, (b) determining from the sequences of photon counts intermediate statistical data comprising at least two probability functions, P1(n1),P2(n2),..., of the number of photon counts, n1, n2,..., detected in different sets of counting time intervals, (c) determining from said intermediate statistical data a distribution of particles as a function of at least two arguments, wherein one argument is a specific brightness of the particles, or a measure thereof, and another argument is a diffusion coefficient of the particles, or a measure thereof.
Abstract:
The invention relates to a device for optical spectroscopy with means for generating an interference pattern and with a spatially resolving detector that can receive the generated interference pattern. According to the invention, the wave fronts of at least one component beam being involved in the interference pattern are influenced by spectrally dispersive or diffractive optical elements according to the wavelength.
Abstract:
Die Erfindung betrifft ein Verfahren zur Bestimmung des Übergangs mindestens eines Referenzwirkstoffs innerhalb eines Meßvolumens einer Probe von an einem in der Probe befindlichen Substrat gebundenen Zustand in einen frei diffundierenden Zustand oder umgekehrt durch Registrierung des Translationsdiffusionsverhaltens des mindestens einen Referenzwirkstoffs mittels der Ramankorrelationsspektroskopie. Ferner betrifft die Erfindung die Verwendung einer Vorrichtung zur Bestimmung des Übergangs mindestens eines Referenzwirkstoffs innerhalb eines Meßvolumens einer Probe von an einem in der Probe befindlichen Substrat gebundenen Zustand in einen frei diffundierenden Zustand oder umgekehrt, wobei die Vorrichtung mindestens die folgenden Elemente aufweist: a. eine Lichtquelle mit variabler Belichtungswellenlänge; b. eine Fokussierungseinrichtung zum Einstellen eines definierten zu untersuchenden Meßvolumens innerhalb einer Probe; c. mindestens eine Einrichtung zur Detektion von durch den Referenzwirkstoff erzeugtem Raman-Streulicht mit guter Zeitauflösung; d. eine Einrichtung zur Durchführung einer Fluktuationsanalyse zur Wirkstoffsuche.
Abstract:
Meßgerät zur Bestimmung der statischen und/oder dynamischen Lichtstreuung, das eine Lichtquelle zur Erzeugung eines Laserstrahles aufweist, mit dem eine in einer zylindrischen Küvette enthaltende Probe beleuchtet werden kann, die im Zentrum eines Drehtisches koaxial zu dessen Rotationsachse und orthogonal zum Laserstrahl angeordnet ist, wobei auf dem Drehtisch eine Vielzahl von Detektoren zur Messung des von der Probe gestreuten Lichtes in beliebigen Winkeln nebeneinander angeordnet sind.
Abstract:
Meßgerät zur Bestimmung der statischen und/oder dynamischen Lichtstreuung, das eine Lichtquelle zur Erzeugung eines Laserstrahles aufweist, mit dem eine in einer zylindrischen Küvette enthaltende Probe beleuchtet werden kann, die im Zentrum eines Drehtisches koaxial zu dessen Rotationsachse und orthogonal zum Laserstrahl angeordnet ist, wobei auf dem Drehtisch eine Vielzahl von Detektoren zur Messung des von der Probe gestreuten Lichtes in beliebigen Winkeln nebeneinander angeordnet sind.
Abstract:
A differential spectrometry system detects very narrow-band spectral features, while providing much higher optical transmittance and signal-to-noise ratios than prior optical-filter-based spectrometer systems. A plurality of light detectors (10a, 10b) detect light that falls within respective wide wavebands. The wide wavebands have overlapping and non-overlapping portions, one of which is the desired narrow waveband. The detector outputs are operated upon to produce an output signal (22) which includes substantially only the desired narrow waveband. In the preferred embodiment, the light detectors (10a, 10b) are implemented with a pair of optical detectors (30a, 30b) and respective optical interference filters (24a, 24b). The filters have substantially identical cut-off wavelengths (λ 2 ) and cut-on wavelengths that are shifted by Δλ with respect to each other (λ 1 and (λ 1 +Δλ), respectively). The detector outputs are differenced with an operational amplifier (33), so that detector signals resulting from spectral features common to both detectors (30a, 30b) are canceled. The remaining signal (36) varies according to the amount of light that falls between wavelength boundaries [λ 1 and (λ 1 +Δλ)]. A preferred method of fabricating the optical interference filters (24a, 24b) is also provided.
Abstract:
According to one embodiment, an explosive spark estimation system (1) includes a measuring system (3) and a processing system (4). The measuring system (3) is adapted to measure intensity of light, included in a spark (S) occurred from an object (O) to be tested. The light is within at least one specific wavelength band. The processing system (4) is adapted to determine whether the spark (S) is explosiveness based on the intensity of the light. Further, according to one embodiment, an explosive spark estimation method includes: measuring intensity of light, included in a spark (S) occurred from an object (O) to be tested, within at least one specific wavelength band; and determining whether the spark (S) is explosive, based on the intensity of the light.
Abstract:
Technologies for providing optical analysis systems using an integrated computational element with laterally-distributed spectral filters are described. A measurement tool contains an optical element including a substrate and a plurality of spectral filters supported by the substrate and arranged at different lateral positions with respect to a path of light to be received from a sample during operation of the measurement tool. Each spectral filter is formed to transmit or reflect a different subset of wavelengths in a wavelength range. Additionally, each spectral filter has a respective area exposed to the light from the sample, such that the respective areas are related to a property of the sample. The wavelength range can include wavelengths in a range from about 0.2μm to about 25μm. Additionally, the sample can include wellbore fluids and the property of the sample is a property of the wellbore fluids.
Abstract:
Fluid analysis systems with Integrated Computation Elements (ICEs) or other optical path components formed using atomic layer deposition (ALD) enables improved tolerances and design flexibility. In some of the disclosed embodiments, a fluid analysis system includes a light source and an ICE. The fluid analysis system also includes a detector that converts optical signals to electrical signals. The ICE comprises a plurality of optical layers, where at least one of the plurality of optical layers is formed using ALD. A related method includes selecting an ICE design having a plurality of optical layers. The method also includes forming at least one of the plurality of optical layers of the ICE using ALD to enable prediction of a chemical or physical property of a substance. A related logging string includes a logging tool section and a fluid analysis tool associated with the logging tool section.