摘要:
A downstream exhaust system controller (10) generates a target value for the output of an upstream O 2 sensor (7) disposed between first (3) and second (4) catalytic converters for converging the output of a downstream O 2 sensor (6) disposed downstream of the second catalytic converter to a target value while taking into account the dead time of a downstream exhaust system (E1). An upstream exhaust system controller (11) generates a target air-fuel ratio for an internal combustion engine (1) for converging the output of the upstream O 2 sensor to a target value while taking into account the dead time of an upstream exhaust system (E2). A fuel processing controller (12) controls the air-fuel ratio of the internal combustion engine at the target air-fuel ratio according to a feedback control process.
摘要:
An air-fuel control system for use with an internal combustion engine (1) has a catalytic converter (4) disposed in an exhaust system (A) of the engine, for purifying an exhaust gas emitted from the engine, a first exhaust gas sensor (6) in the exhaust system for detecting an air-fuel ratio of the exhaust gas upstream of the catalytic converter, a second exhaust gas sensor (7) in the exhaust system for detecting the concentration of a component of the exhaust gas which has passed through the catalytic converter, downstream of the catalytic converter, and a correction quantity calculator (16) for determining a correction quantity to correct an air-fuel ratio of the engine based on an output from the second exhaust gas sensor so as to equalize the concentration of the component of the exhaust gas downstream of the catalytic converter to a predetermined appropriate value. The air-fuel ratio of the engine is controlled based on the determined correction quantity and an output from the first exhaust gas sensor so as to converge the concentration of the component toward the predetermined appropriate value. A state predictor (18) estimates the concentration of the component, detected by the second exhaust gas sensor, after a dead time present in an exhaust system including the catalytic converter between the first and second exhaust gas sensors, based on outputs up to the present from the first and second exhaust gas sensors. The correction quantity calculator determines the air-fuel ratio of the engine so as to equalize the concentration of the component to the predetermined appropriate value, based on the estimated concentration of the component.
摘要:
A control system for a plant is provided. This control system can control the plant more stably, when the model parameters of the controlled object model which are obtained by modeling the plant, which is a controlled object, are identified and the sliding mode control is performed using the identified model parameters. The model parameter identifier (22) calculates a model parameter vector (θ) by adding an updating vector (d θ) to a reference vector ( θ base) of the model parameter. The updating vector (dθ) is corrected by multiplying a past value of at least one element of the updating vector by a predetermined value which is greater than "0" and less than "1". The model parameter vector (θ) is calculated by adding the corrected updating vector (d θ) to the reference vector (θ base).
摘要:
A plant control system controls a plant (E) modeled as a discrete-system model including an element relative to a response delay of the plant (E) and an element relative to a dead time of the plant (E). The plant control system includes an actuator (1) for generating an input (LAF) to the plant (E), a first detector (6) for detecting an output from the plant (E), and a second detector (5) for detecting the input to the plant (E). An estimator (26) generates data representing an estimated value (VO2) of an output of the first detector (6) after the dead time, based on data representing an output of the second detector (5). A manipulated variable determining unit (13) determines a manipulated variable (KCMD) which determines the input to the plant (E), based on the estimated value, represented by the data generated by the estimator, of the output of the first detector (6) after the dead time. The input to the plant (E) from the actuator (1) is controlled such that the output from the first detector (6) will be equalized to a predetermined target value.
摘要:
An interacting term existing in a control system is decoupled on the basis of a regular condition of a decoupling matrix. Then, an hyperplane σ which has been obtained to satisfy the Lyapunov stability condition is designed. A control quantity is converged along the hyperplane σ . In this case, even if uncertainty is generated in a C matrix for connecting a state variable x(t) and an output y(t) of an object to be controlled, it is possible to converge the control quantity while always satisfying the Lyapunov stability condition. A non-linear input gain k i (x,t) used in the control system is designed to be greater than a predetermined value when there is no uncertainty in the C matrix to satisfy the Lyapunov stability condition. Also, a control input signal based upon the sliding mode decoupling control is converted to an articulation torque by a Jacobian. Also, for the control input signal, reverse dynamics of non-linear force are added thereto.
摘要:
An air-fuel control system for use with an internal combustion engine (1) has a catalytic converter (4) disposed in an exhaust system (A) of the engine, for purifying an exhaust gas emitted from the engine, a first exhaust gas sensor (6) in the exhaust system for detecting an air-fuel ratio of the exhaust gas upstream of the catalytic converter, a second exhaust gas sensor (7) in the exhaust system for detecting the concentration of a component of the exhaust gas which has passed through the catalytic converter, downstream of the catalytic converter, and a correction quantity calculator (16) for determining a correction quantity to correct an air-fuel ratio of the engine based on an output from the second exhaust gas sensor so as to equalize the concentration of the component of the exhaust gas downstream of the catalytic converter to a predetermined appropriate value. The air-fuel ratio of the engine is controlled based on the determined correction quantity and an output from the first exhaust gas sensor so as to converge the concentration of the component toward the predetermined appropriate value. A state predictor (18) estimates the concentration of the component, detected by the second exhaust gas sensor, after a dead time present in an exhaust system including the catalytic converter between the first and second exhaust gas sensors, based on outputs up to the present from the first and second exhaust gas sensors. The correction quantity calculator determines the air-fuel ratio of the engine so as to equalize the concentration of the component to the predetermined appropriate value, based on the estimated concentration of the component.
摘要:
A time delay control system in which estimated unknown dynamics of a controlled process are calculated using calculations representative of convolutions of a state transition matrix with past data. A user or high level controller provides desired dynamics for a process. Periodic measurements of the processor taken to determine an error vector between the desired dynamics and the actual state of the process. The desired dynamics are used to determine the desired effects based on the present measured value of the state variables. The desired effects and the estimated effects of unknown dynamics are combined and multiplied by a pseudo inverse of a control matrix to obtain a control value. An error vector is multiplied by a feedback gain matrix and added to the control value to produce signal inputs to the process.
摘要:
A method includes obtaining information identifying uncertainties associated with multiple parameters of a model for an industrial model-based controller. The method also includes obtaining information identifying multiple tuning parameters for the controller. The method further includes generating a graphical display identifying (i) one or more expected step responses of an industrial process that are based on the tuning parameters of the controller and (ii) an envelope around the one or more expected step responses that is based on the uncertainties associated with the parameters of the model. The parameters could include a process gain, a time constant, and a time delay associated with the model. The uncertainties associated with the parameters of the model could include, for each parameter of the model, an uncertainty expressed in the time domain. The information identifying the tuning parameters could include a settling time and an overshoot associated with the controller.