摘要:
A ceramic filter assembly integrated by adhering together a plurality of columnar honeycomb filters made of a porous ceramic sintered material with a ceramic sealing material layer and having a generally elliptical cross sectional shape when cut parallel to end faces of the plurality of honeycomb filters, the ceramic filter assembly characterized in that when a hypothetical first straight line intersects the generally elliptical contour at two points in which the distance therebetween is maximum and a hypothetical second straight line orthogonal to the first straight line intersects the generally elliptical contour at two points in which the distance therebetween is minimum, the number of sealing material layers the first straight line of the assembly traverses is less than or equal to the number of sealing material layers the second straight line traverses.
摘要:
A ceramic filter assembly integrated by adhering together outer surfaces of a plurality of columnar honeycomb filters made of a porous ceramic sintered material with a ceramic sealing material layer and having a generally elliptical cross sectional shape when cut parallel to end faces of the plurality of honeycomb filters, the ceramic filter assembly characterized in that the ceramic sealing material layer includes a first sealing material layer (15a,E1) extending parallel to the major axis of the assembly and a second sealing material layer (15b,E2) extending orthogonal to the major axis of the assembly, the first sealing material layer being thicker than the second sealing material layer.
摘要:
A ceramic filter assembly integrated by adhering together a plurality of columnar honeycomb filters made of a porous ceramic sintered material with a ceramic sealing material layer and having a generally elliptical cross sectional shape when cut parallel to end faces of the plurality of honeycomb filters, the ceramic filter assembly characterized in that each honeycomb filter includes a plurality of rectangular cells extending along an axis of the filter and defined by relatively thick cell walls (D1) and relatively thin walls (D2) that are orthogonal to each other, the plurality of honeycomb filters being arranged so that the relatively thick cell walls are parallel to the major axis of the assembly and the relatively thin cell walls are parallel to the minor axis of the assembly.
摘要:
The present invention provides a honeycomb catalyst and an NO x removal catalyst for use in an NO x removal apparatus which can be employed at high efficiency, and a flue gas NO x removal apparatus, whereby the running cost of a flue gas NO x removal system in terms of the NO x removal catalyst is reduced by about one-half. The honeycomb catalyst having gas conduits for feeding a gas to be treated from an inlet to an outlet of each conduit and performing gas treatment on the sidewalls of the conduit, wherein the honeycomb catalyst has an approximate length such that the flow of the gas to be treated which has been fed into the gas conduits is straightened in the vicinity of the outlet.
摘要:
In a honeycomb filter in which a plurality of cells are formed by porous partition walls, and a predetermined cell whose one end portion is plugged, and a remaining cell whose other end portion is plugged are alternately arranged in such a manner as to form checked patterns in the opposite end portions. In a section of the filter, a sectional area of the predetermined cell is different from that of the remaining cell, a value of a ratio of a channel hydraulic diameter of the cell having a large sectional area to that of the cell having a small sectional area is 1.2 or more, at least a sectional shape of the cell having the large sectional area is a quadrangular shape whose portion corresponding to at least one corner portion is circular, and a value of a ratio of minimum thickness of a portion (intersection portion) in which the partition walls cross one another to a thickness of each partition wall 2 is 0.7 or more and less than 1.3. The honeycomb filter is capable of inhibiting a fluid inflow-side end face (opening of an inflow-side cell) from being closed by particulates and the like, and maintaining high strength.
摘要:
An exhaust manifold comprises a plurality of exhaust intake conduits structured to be fluidly coupled to an engine and receive exhaust gas from a corresponding cylinder of the engine. At least one exhaust intake conduit provides a reduction in an exhaust intake conduit cross-sectional area from an inlet to an outlet. A plurality of bends are each defined by a respective one of the exhaust intake conduit outlets. An exhaust intake manifold is fluidly coupled to the exhaust intake manifold and defines an exhaust intake manifold flow axis. Each of the plurality of bends is shaped so as to define an angle of approach of exhaust gas flowing therethrough. A first angle of approach of the first bend relative to the exhaust intake manifold flow axis is smaller than a second angle of approach of an inner second bend.
摘要:
A compact Selective Catalytic Reduction (SCR) system comprising a gas flow inlet system, a vaporizer module and an SCR reactor is described. The inlet flow system is configured to provide heat to the vaporizer module, to mix reductant with the exhaust gas and to provide an approximately uniform flow of the exhaust gas through the catalyst. The vaporizer module is configured to vaporize reductant from a solution of a reductant or a precursor of a reductant and to transfer the vaporized reductant into the gas flow inlet system, where it is mixed with exhaust gas. The SCR reactor contains and SCR catalyst is in fluid communication with the inlet flow system and the vaporizer module.
摘要:
A very compact Selective Catalytic Reduction (SCR) system with a very low footprint comprising an SCR reactor, an inlet flow system, and a vaporizer module is described. The SCR reactor comprises at least one SCR catalyst which is in communication with the inlet flow system and the vaporizer module. The inlet flow system is configured to provide an approximately uniform flow of the exhaust gas through the catalyst and to provide heat to the vaporizer module. The vaporizer module is configured to allow for the conversion of urea to ammonia and to contact the ammonia with the exhaust gases in the SCR reactor upstream of the SCR catalyst.