Abstract:
Broadly speaking, an invention is provided for monitoring a plasma optical emission. More specifically, the present invention provides a method for monitoring the plasma optical emission through a variable aperture to detect an endpoint of a plasma etching process without interferences that could lead to false endpoint calls. The method includes collecting optical emission data from a plasma through an aperture defined by moveable members. The moveable members are capable of varying a configuration of the aperture. The method also includes holding the moveable members at a particular time to cause the aperture to maintain a fixed configuration. The method further includes detecting a specific perturbation in the plasma optical emission while holding the moveable members.
Abstract:
L'invention propose un procédé et un dispositif de détection d'espèces gazeuses minoritaires dans un mélange par spectroscopie d'émission optique au moyen d'un spectromètre optique (8), dans lequel on utilise la radiation émise par un plasma (4) présent dans le mélange gazeux à analyser, et on retient, dans le spectre de cette radiation, les raies d'une espèce gazeuse majoritaire dont l'amplitude est sensible à la présence de l'espèce minoritaire, et on déduit de l'amplitude de cette ou de ces raies sensibles une information sur la concentration de l'espèce gazeuse minoritaire. Il est alors possible d'assurer une surveillance d'espèces gazeuses minoritaires en temps réel.
Abstract:
A measurement device and method are provided for OES measurements in air. An arc electrode (201, 501) has a certain thickness and a pointed end having a certain grinding angle. Holding means (202, 502) hold the arc electrode (201, 501) at a certain distance from the material to be measured. A voltage and current supply (203) generates and maintains a voltage between the arc electrode and the material to be measured and supplies current through the arc. Focusing and detection optics (205, 206, 402, 403, 404, 405, 406, 407, 408, 505, 506, 509, 604) collect and detect optical radiation. The thickness of the arc electrode (201, 501) is between 3 and 10 mm and the grinding angle is between 50 and 130 degrees. The arc distance is between 0.5 and 3 mm. An ignition spark voltage is between 5 and 20 kV, an arc voltage between 20 and 160 V and an arc current between 1 and 10 A. The focusing and detection optics (205, 206, 402, 403, 404, 405, 406, 407, 408, 505, 506, 509, 604) collect and detect at least optical radiation on a wavelength of 193 nm.
Abstract:
An inductively coupled plasma spectrometer including shielding/sampling means (1) located between a plasma torch (3) and an optical system (4) of the spectrometer, wherein said shielding/sampling (1) means is associated with an enclosure (9) for the plasma torch such that a relatively high independance path (10, 11) is established for limiting flow of electrical current between said shielding/sampling means (1) and said enclosure (9).
Abstract:
The present invention provides a scanning apparatus to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction. The constant path length optical train comprises a light source, a scanning mirror (40) to receive light from the light source and sweep it across a steering mirror (50), the steering mirror receives the light from the scanning mirror and reflect the light to a substrate wherein the substrate reflects the light to a photodetector (70).
Abstract:
The disclosure relates to a spectroanalytical system with radiation dispersing apparatus (10) for dispersing radiation into a spectrum for concurrent application to an array (38) of exit ports; sample excitation apparatus (32) for exciting sample material to be analyzed to spectroemissive levels for generating a beam of radiation for dispersion by the dispersing apparatus; the exit port array including a corresponding array of detectors (20A to H) including a first detector (20A, 20B, 20C, 20D) positioned adjacent a first exit port positioned to sense first order radiation from an element of interest and a second detector (20E, 20F, 20G, 20H) positioned adjacent a second exit port to sense second order radiation from the same element of interest; and processing apparatus (40) for responding to outputs of the first and second detectors to provide a compensated output as a function of the quantity of the element of interest in the sample material.
Abstract:
Es wird ein Verfahren zur Elementanalyse mit laserinduzierter Emmissionsspektralanalyse einer Metallschmelze an ihrer Oberfläche in einer Bohrung an einem Schmelzgefäß (1) angegeben. Die Bohrung ist mit einem Rohr (4) versehen, das außen mit einem Quarzfenster (6) verschlossen ist. Über einen seitlichen Stutzen (5) am Rohr strömt ein inertes Gas mit einer Temperatur von mehr als 300 °C in die Bohrung. Das Rohr (4) ist mit einem Gehäuse (7) verbunden, an das über einen Lichtwellenleiter (14) ein Spektrometer (15) gekoppelt ist. Das Laserlicht, eines im Gehäuse befindlichen Lasers (8) wird über justierbare Linsen (9) und Spiegel (10) auf die Metalloberfläche (12) fokussiert und erzeugt dort ein Plasma (11). Das von der Metalloberfläche emittierte Plasmalicht wird mit einem justierbaren Linsensystem (13a, 13b) in den Lichtwellenleiter (14) gekoppelt und zum Spektrometer (15) geleitet.
Abstract:
A spectroscopic measurement apparatus 1A comprises an integrating sphere 20 in which a sample S is located, a spectroscopic analyzer 30 dispersing the light to be measured from the sample S and obtaining a wavelength spectrum, and a data analyzer 50. The analyzer 50 includes an object range setting section which sets a first object range corresponding to excitation light and a second object range corresponding to light emission from the sample S in a wavelength spectrum, and a sample information analyzing section which determines a luminescence quantum yield of the sample S, determines a measurement value ¦ 0 of the luminescence quantum yield from results of a reference measurement and a sample measurement, and determines, by using factors ², ³ regarding stray light in the reference measurement, an analysis value ¦ of the luminescence quantum yield with the effect of stray light reduced by ¦ = ²¦ 0 +³. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can reduce the effect of stray light generated in a spectrometer.
Abstract:
An electrolysis device (1) comprising a cell (10) containing a solution (60), a pair of electrodes installed in the cell (10), and a voltage application device (50) connected to the pair of electrodes. One electrode of the pair of electrodes is a smaller electrode (20), and another electrode of the pair of electroeds is a larger electrode (30). An area of a liquid-contacting portion (21) of the smaller electrode (20) with the solution (60) is smaller than an area of a liquid-contacting portion of the larger electrode (30) with the solution (60). In a state in which the solution (60) is contained in the cell (10), only the solution (60) is present between the liquid-contacting portion (21) of the smaller electrode (20) and a liquid surface (61) of the solution (60) vertically above the liquid-contacting portion (21) of the smaller electrode (20).