Abstract:
A method for finding L internal reference vectors for classification of L chromosomes or portions of chromosomes of a cell, the L chromosomes or portions of chromosomes being painted with K different fluorophores or combinations thereof, wherein K basic chromosomes or portions of chromosomes of the L chromosomes or portions of chromosomes are each painted with only one of the K different fluorophores, whereas the other L-K of the L chromosomes or portions of chromosomes are each painted with a different combination of the K different fluorophores, the method comprising the steps of (a) using a multi-band collection device for measuring a first vector for each pixel of each of the L chromosomes or portions of chromosomes; (b) identifying pixels belonging to each of the K basic chromosomes or portions of chromosomes and defining the pixels as basic pixels, so as to obtain K basic classes of basic pixels; (c) using at least one basic pixel from each of the K basic classes for obtaining K basic vectors, the K basic vectors being K internal reference vectors; (d) using the K basic vectors for identifying pixels belonging to the other L-K chromosomes or portions of chromosomes; and (e) using the pixels belonging to the other L-K chromosomes or portions of chromosomes for calculating the other L-K internal reference vectors, thereby finding all of the L internal reference vectors. A method for classification of L chromosomes or portions of chromosomes of a cell similarly painted using the above method for finding L internal reference vectors, and using the L reference vectors for classification of each of the pixels into one of L classification classes. And, images presenting color chromosomes.
Abstract:
A method for cancer cell detection including the steps of (a) staining an analyzed sample with at least first and second dyes, the dyes being selected such that the first dye better adheres to normal cells whereas the second dye better adheres to cancer cells; (b) spectrally imaging the sample through an optical device being optically connected to an imaging spectrometer thereby obtaining a spectrum of each pixel of the sample; (c) based on the spectra, evaluating concentrations of the first and second dyes for each of the pixels; and (d) based on the concentrations detecting the presence of cancer cells in the sample.
Abstract:
A method for remote scenes classification comprising the steps of (a) preparing a reference template for classification of the remote scenes via (i) classifying a set of reference scenes via a conventional classification technique for obtaining a set of preclassified reference scenes; (ii) using a first spectral imager for measuring a spectral cube of the preclassified reference scenes; (iii) employing a principal component analysis for extracting the spectral cube for decorrelated spectral data characterizing the reference scenes; and (iv) using at least a part of the decorrelated spectral data for the preparation of the reference template for remote scenes classification; (b) using a second spectral imager for measuring a spectral cube of analyzed remote scenes, such that a spectrum of each pixel in the remote scenes is obtained; (c) employing a decorrelation statistical method for extracting decorrelated spectral data characterizing the pixels; and (d) comparing at least a part of the decorrelated spectral data extracted from the pixels of the remote scenes with the reference template.
Abstract:
Methods of screening for a tumor or tumor progression to the metastatic state are disclosed. The screening methods are based on the characterization of DNA by principal components analysis of spectral data yielded by Fourier transform-infrared spectroscopy of DNA samples. The methods are applicable to a wide variety of DNA samples and cancer types. A model developed using multivariate normal distribution equations and discriminant analysis is particularly well suited for distinguishing primary cancerous tissue from metastatic cancerous tissue.
Abstract:
A method is suggested for obtaining information on the electromagnetic spectrum of a sample, the method comprising (a) generating a plurality of substantially identical signals, (b) determining the shape of a first number of the signals by performing a first number of scans of a first range of signal width, (c) determining the shape of a second number of the signals by performing a second number of scans of a second range of signal width, the second range being comprised by the first range and comprising a portion of the first range in which the signals have maximum absolute amplitude, (d) combining data from the first number of scans and the second number of scans so as to obtain data corresponding to the shape of the signals, and (e) performing a mathematical transformation of the combined data so as to obtain the information on the electromagnetic spectrum of the sample. According to this method, the electromagnetic spectrum - and especially an absorption spectrum for use in quantitative analysis of the sample - may be obtained faster than is possible using prior art methods.
Abstract:
The invention concerns a double-beam interferometer (1) for electromagnetic radiation and a method for the compensation of dispersion or increase in the spectral resolution of such an interferometer. Using a polarizer (8), which is brought into the optical radiation path, a defined polarization state P1/20 is produced for the electromagnetic partial waves flowing into the arms of the interferometer. This polarization state is wavelenght-independent and can vary for both partial beams. Optical elements (11, 12) modify the polarization state P¿1/2?0 of the electromagnetic partial waves as a function of wave-length μ and each spectral component μ¿i? is coded with a polarization P1/2 (μi). An analyzer (9), fitted to the output of the interferometer, transmits an adjustable polarization state Pdet, whereby an additional wavelength-dependent phase difference η(μ) occurs between the partial waves of the spectral components. η(μ) can be adjusted to obtain compensation of dispersion or an increase in the spectral resolution of the interferometer.
Abstract:
An interferometer for Fourier spectroscopy, wherein the interferometer comprises a beamsplitter (14) and two retroreflectors (20, 26), characterized in that the beamsplitter (14) is mounted movably, e.g., mounted pivotally or displacably, while both retroreflectors (20, 26) are arranged as fixed retroreflectors. The proposed structure is simple to produce, can be made substantially insensible to environmental vibrations, and it is well suited for routine measurements for the determination of quantities of predefined components in a medium. The interferometer is particularly intended for measurements in the mid- or near-infrared range for determination of the quantities of specified components in a medium, and more specifically in a food product, e.g., a liquid such as milk.
Abstract:
A spectral imaging method for simultaneous detection of multiple fluorophores aimed at detecting and analyzing fluorescent in situ hybridizations employing numerous chromosome paints and/or loci specific probes each labeled with a different fluorophore or a combination of fluorophores for color karyotyping, and at multicolor chromosome banding, wherein each chromosome acquires a specifying banding pattern, which pattern is established using groups of chromosome fragments labeled with various fluorophores or combinations of fluorophores.
Abstract:
This invention teaches a method to identify cellular abnormalities which are associated with disease states. In one aspect, the invention is a method to distinguish premalignant and malignant stages of cervical cancer from normal cervical cells. The method utilizes infrared (IR) spectra of exfoliated cervical cells which are dried on an infrared transparent matrix and scanned at the frequency range from 3000-950 cm . The identification of samples is based on establishing a calibration using a representative set of spectra of normal, dysplastic and malignant specimens. During the calibration process, multivariate techniques such as Principal Component Analysis (PCA) and/or Partial Least Squares (PLS) are used. PCA and PLS reduce the data based on maximum variations between the spectra, and generate clusters in a multidimensional space representing the different populations. The utilization of Mahalinobis distances, or linear regression (e.g., Principle Component Regression on the reduced data from PCA) form the basis for the discrimination. This method is simple to use and achieves statistically reliable distinction between the following groups of cervical smears: normal (individuals with no prior history of dysplasia), dysplasia and malignant samples. Further, this invention discloses a method to obtain the IR spectrum of individual cervical cells fixed on an infrared transparent matrix and to use the spectra of the individual cells in the method described above. In an additional aspect, the invention is a method for using vibrational spectroscopic imaging to distinguish between normal and diseased cells.
Abstract:
The present invention relates to a high signal-to-noise (S/N) ratio Fourier transform spectrometer by reducing analog to digital A/D converter noise. In a Fourier transform spectrometer which measures the interference light of a measured light and determines the spectra of the measured light through implementation of a Fourier transform on this measured result using a means of computation control, the present invention provides a light-receiving means; a low-gain channel and a high-gain channel, which convert to and retain as digital signals the output of this light-receiving means; and the above means of computation control (CPU) which determines the correlation equation between the low-gain and high-gain channels and substitutes the low-gain channel output converted using the above correlation equation for the saturated portion of the high-gain channel output.