Abstract:
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected so that a spectral component associated with each of the N stains is collectible. Figure (1) shows a block diagram illustrating the main components of an imaging spectrometer.
Abstract:
A fluorescent in situ hybridization method including the steps of (a) obtaining a chromosome spread of a species; (b) preparing a hybridization composite containing a plurality of chromosomal paints each of the plurality of chromosomal paints being labeled with a different fluorophore-or-combination-of-fluorophores, such that an averaged specific activity of highly repetitive sequences in the hybridization composite substantially equals an averaged specific activity of unique sequences in the hybridization composite; (c) denaturing the hybridization composite and subjecting the hybridization composite to conditions for allowing at least a part of the highly repetitive sequences in the hybridization composite to reanneal while at least a part of the unique sequences in the hybridization composite remaining single stranded; (d) contacting under hybridization conditions the hybridization composite with the chromosome spread; (e) washing away excess of the hybridization composite; and (f) analyzing and presenting images of the now hybridized chromosome spread.
Abstract:
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected so that a spectral component associated with each of the N stains is collectible. Figure (1) shows a block diagram illustrating the main components of an imaging spectrometer.
Abstract:
A method for finding L internal reference vectors for classification of L chromosomes or portions of chromosomes of a cell, the L chromosomes or portions of chromosomes being painted with K different fluorophores or combinations thereof, wherein K basic chromosomes or portions of chromosomes of the L chromosomes or portions of chromosomes are each painted with only one of the K different fluorophores, whereas the other L-K of the L chromosomes or portions of chromosomes are each painted with a different combination of the K different fluorophores, the method comprising the steps of (a) using a multi-band collection device for measuring a first vector for each pixel of each of the L chromosomes or portions of chromosomes; (b) identifying pixels belonging to each of the K basic chromosomes or portions of chromosomes and defining the pixels as basic pixels, so as to obtain K basic classes of basic pixels; (c) using at least one basic pixel from each of the K basic classes for obtaining K basic vectors, the K basic vectors being K internal reference vectors; (d) using the K basic vectors for identifying pixels belonging to the other L-K chromosomes or portions of chromosomes; and (e) using the pixels belonging to the other L-K chromosomes or portions of chromosomes for calculating the other L-K internal reference vectors, thereby finding all of the L internal reference vectors. A method for classification of L chromosomes or portions of chromosomes of a cell similarly painted using the above method for finding L internal reference vectors, and using the L reference vectors for classification of each of the pixels into one of L classification classes. And, images presenting color chromosomes.
Abstract:
A method for cancer cell detection including the steps of (a) staining an analyzed sample with at least first and second dyes, the dyes being selected such that the first dye better adheres to normal cells whereas the second dye better adheres to cancer cells; (b) spectrally imaging the sample through an optical device being optically connected to an imaging spectrometer thereby obtaining a spectrum of each pixel of the sample; (c) based on the spectra, evaluating concentrations of the first and second dyes for each of the pixels; and (d) based on the concentrations detecting the presence of cancer cells in the sample.
Abstract:
A spectral imaging method for simultaneous detection of multiple fluorophores aimed at detecting and analyzing fluorescent in situ hybridizations employing numerous chromosome paints and/or loci specific probes each labeled with a different fluorophore or a combination of fluorophores for color karyotyping, and at multicolor chromosome banding, wherein each chromosome acquires a specifying banding pattern, which pattern is established using groups of chromosome fragments labeled with various fluorophores or combinations of fluorophores.