摘要:
In an example, a method of coding video data includes obtaining one or more video coding layer (VCL) network abstraction layer (NAL) units of an access unit and a first layer of a multi-layer bitstream of video data. The method also includes only coding one or more non-VCL NAL units containing an SEI message applicable to the VCL NAL units of the first layer together with the VCL NAL units of the first layer such that within the access unit the bitstream does not contain any coded pictures of any other layer of the multi-layer bitstream between the VCL NAL units of the first layer and the non-VCL NAL units containing the SEI message applicable to the VCL NAL units of the first layer.
摘要:
In an example, a method of coding video data includes obtaining one or more video coding layer (VCL) network abstraction layer (NAL) units of an access unit and a first layer of a multi-layer bitstream of video data. The method also includes only coding one or more non-VCL NAL units containing an SEI message applicable to the VCL NAL units of the first layer together with the VCL NAL units of the first layer such that within the access unit the bitstream does not contain any coded pictures of any other layer of the multi-layer bitstream between the VCL NAL units of the first layer and the non-VCL NAL units containing the SEI message applicable to the VCL NAL units of the first layer.
摘要:
An encoded representation (60) of a picture (10) of a video stream (1) is decoded by retrieving buffer description from the encoded representation (60). The buffer description information is used to determine at least one picture identifier identifying a respective reference picture (40, 42) as decoding reference for the picture (10). A decoded picture buffer (530, 650) is updated based on the determined picture identifier. The encoded representation (60) of the picture (10) itself comprises the information needed by a decoder (400) to identify the reference pictures (40, 42) required to decode the encoded representation (60)
摘要:
For an image portion to encode an initial set of motion information predictors is obtained (S502). It is tested (S512) whether the number (N) of motion information predictors in the initial set is lower than a target number (Nmax) and, if so, one or more motion information predictors are added (S516) to the initial set to generate a set of motion information predictors having controlled diversity. The motion information predictors of the initial set are actual motion information predictors, having motion vectors obtained from image portions of the image being encoded or of a reference image, and potential motion information predictors for addition include one or more further such actual motion information predictors and also include one or more virtual motion information predictors not having motion vectors obtained from image portions of said image being encoded or of a reference image. A motion information predictor for the image portion to encode is selected from the generated set of motion information predictors.
摘要:
Methods of data encoding using trees formed with logic gates are described which lead to spatial compression of image data. Data encoding is achieved using a five-level wavelet transform, such as the Haar or the 2/10 transform. A dual transform engine is used, the first and engine being used for the first part of the first-level transform, the second part of the first-level transform and the subsequent-level transforms being performed by the second transform engine within a time interval which is less than or equal to the time taken by the first transform engine to effect the part-transform. Each bit plane of the resulting coefficients is then encoded by forming a tree structure from the bits and OR logical combinations thereof. Redundant data are removed from the resulting tree structure, and further data can be removed by using a predetermined compression profile. The resulting blocks of compressed data are of variable length and are packaged with sync words and index words for transmission so that the location and identity of the transformed data blocks can be determined from the received signal.