Abstract:
A cryogenic delivery tank includes a vessel having inner and outer shells and an interior that may contain a cryogenic liquid with a headspace above. A transfer pipe passes through the interior of the vessel and includes a head space coil positioned within an upper portion of the interior and a liquid side coil positioned in the lower portion of the interior. The transfer pipe has a first port adjacent to the head space coil and a second port adjacent to the liquid side coil. The first and second ports of the transfer pipe are configured to be removably attached to a second tank.
Abstract:
A cryogenic fluid delivery system includes a tank configured to store a supply of cryogenic liquid and a heat exchanger having a main line and a reheat line. A liquid pickup line has an inlet that receives cryogenic liquid from the tank and directs it to the main line of the heat exchanger. A trim heater exit tee receives fluid from the main line of the heat exchanger. Fluid exits the trim heater exit tee through an engine outlet and a trim heater outlet. Fluid exiting through the engine outlet flows through a flow restriction device and to a primary inlet of a trim heater return tee. A trim heater line receives fluid from the trim heater outlet of the trim heater exit tee and directs it to the reheat line of the heat exchanger after the fluid passes through a portion of the trim heater line positioned within the tank. Warmed fluid leaving the reheat line of the heat exchanger travels to a trim heater inlet of the trim heater return tee.
Abstract:
Disclosed is a pump column for use with a submersible pump in an croygenic tank, such as for use in a rail tender fueled by liquid natural gas. The pump column is configured to enable rapid removal and access to a pump submerged within a tank containing liquid natural gas.
Abstract:
Disclosed is a pump column for use with a submersible pump in an croygenic tank, such as for use in a rail tender fueled by liquid natural gas. The pump column is configured to enable rapid removal and access to a pump submerged within a tank containing liquid natural gas.
Abstract:
A cryogenic fluid delivery system includes a tank adapted to contain a supply of cryogenic liquid, with the tank including a head space adapted to contain a vapor above the cryogenic liquid stored in the tank. A liquid withdrawal line is adapted to communicate with cryogenic liquid stored in the tank. A vaporizer has an inlet that is in communication with the liquid withdrawal line and an outlet that is in communication with a vapor delivery line. A pressure building circuit is in communication with the vapor delivery line and the head space of the tank. The pressure building circuit includes a flow inducing device and a control system for activating the flow inducing device when a pressure within the head space of the tank drops below a predetermined minimum pressure and/or when other conditions exist.
Abstract:
A freezer that uses liquid cryogen as a refrigerant includes an inner vessel defining a storage chamber and an outer jacket generally surrounding the inner vessel so that an insulation space is defined there between. A heat exchanger is positioned in a top portion of the storage chamber and has an inlet in communication with a supply of the liquid cryogen refrigerant so that the liquid cryogen refrigerant selectively flows through the heat exchanger to cool the storage chamber while being vaporized. A purge line is in communication with the outlet of the heat exchanger and includes a purge outlet positioned over the exterior of the heat exchanger. A purge valve is positioned within the purge line so that the vaporized liquid cryogen from the heat exchanger is selectively directed to the exterior of the heat exchanger to reduce ice formation on the heat exchanger.