Abstract:
Ein Transportbehälter (1) für Helium (He), mit einem Innenbehälter (6) zum Aufnehmen des Heliums (He), einem Kühlmittelbehälter (14) zum Aufnehmen einer kryogenen Flüssigkeit (N 2 ), einem Außenbehälter (2), in dem der Innenbehälter (6) und der Kühlmittelbehälter (14) aufgenommen sind, einem thermischen Schild (21), in dem der Innenbehälter (6) aufgenommen ist und der mit Hilfe einer flüssigen Phase der kryogenen Flüssigkeit (LN 2 ) aktiv kühlbar ist, wobei der thermische Schild (21) zumindest eine erste Kühlleitung (26) aufweist, in der zum aktiven Kühlen des thermischen Schilds (21) die flüssige Phase der kryogenen Flüssigkeit (LN 2 ) aufnehmbar ist, und einem Isolationselement (39), das zwischen dem Außenbehälter (2) und dem thermischen Schild (21) angeordnet ist und das mit Hilfe einer gasförmigen Phase der kryogenen Flüssigkeit (GN 2 ) aktiv kühlbar ist, wobei das Isolationselement (39) zumindest eine zweite Kühlleitung (42 - 46) aufweist, in der zum aktiven Kühlen des Isolationselements (39) die gasförmige Phase der kryogenen Flüssigkeit (GN 2 ) aufnehmbar ist.
Abstract:
The present disclosure relates to a natural gas hydrate tank container loading system for transporting natural gas hydrate, and the present disclosure provides a natural gas hydrate tank container loading system, enabling self-powered power generation and boil-off (BOG) gas treatment, includes: a refrigerator for inhibiting the generation of boil-off gas which naturally generates in a natural gas hydrate tank container during transportation; and a solar cell, a battery, and a generator, which operates by means of the boil-off gas, for supplying electric power to the refrigerator, thereby ensuring a generation capacity sufficient to operate the refrigerator by means of the solar cell, the generator, and the battery, and thus always maintaining a stable phase equilibrium (self-preservation) in the natural gas hydrate tank container even during long-distance transportation and solving problems of fire, environmental pollution, or the like which occur when the boil-off gas (BOG) is discharged to the outside.
Abstract:
The present disclosure is directed to a method and system for detecting activation of a pressure relief device connected to a storage tank containing a pressurized gas. The method includes calculating a pressure relief device release rate based on a set of inputs, wherein the set of inputs includes at least one of a storage tank volume, a pressure relief set point, an orifice size of the pressure relief device, a gas density, and a reseat point for the pressure relief device. The method further includes monitoring the pressure within the storage tank and calculating a differential pressure reading over time, comparing the differential pressure reading over time to the pressure relief device release rate, and detecting a pressure relief device activation based on the comparison result.
Abstract:
A cryogenic fluid delivery system includes a main tank system with a main tank adapted to contain a first supply of cryogenic liquid, and reserve tank system with reserve tank adapted to contain a second supply of cryogenic liquid. A pressure building circuit is adapted to delivery vapor to the head space of the main tank to build pressure in the main tank and a fuel delivery line supplies cryogenic fuel from either the main tank or the reserve tank to a use device. The reserve tank stores saturated cryogenic fuel that is delivered to the use device via the fuel delivery line while the cryogenic liquid in the main tank is being saturated. The fluid delivery system automatically switches to delivering cryogenic fuel from the main tank to the use device via the fuel delivery line upon saturation of the cryogenic liquid in the main tank.
Abstract:
Cette installation (1) comprend un réservoir (4) adapté pour contenir une masse dite utile de xénon, un dispositif cryogénique (10) adapté pour condenser du xénon gazeux (GXe) et relié au réservoir (4), ainsi qu'un équipement d'isolation thermique agencé pour isoler thermiquement le réservoir (4).
Abstract:
Method for the production of a high-resistance tank has an initial stage in which a closed metal vessel is formed, followed by a second stage in which the walls of the vessel are subjected to a mechanical pre-tensioning treatment in both the axial and radial directions, up to a predetermined value. This mechanical treatment has a stage in which the tank is enclosed inside a mould of suitably larger dimensions. A liquid is then introduced in the tank and pressurised until the tank walls are dilated and stretched to a point where they encounter the mould inner surface. Subsequently, the outside of the tank is coated with one or more layers of composite material, so as to complete the construction of the tank, upon which a final auto-frettage treatment is carried out. The type of steel to be used is AISI 304, preferably in its more weldable AISI 304L version.
Abstract:
The present disclosure provides a pressure vessel 10 (sometimes known as a composite overwrapped pressure vessel or “COPV”) comprising carbon fiber 20 (such as carbon fiber 20 filaments) wrapped around a tank liner 30.
Abstract:
The invention provides a hydrocarbon processing vessel comprising a plurality of first storage tanks (20) arranged on the starboard side of the longitudinal mid-plane, a plurality of second storage tanks (22) arranged on the port side of the longitudinal mid-plane, and in symmetrical side-by-side arrangement with the plurality of first storage tanks, and at least one longitudinal bulkhead (24) extending along the mid-plane and located between adjacent first and second storage tanks. Preferably the bulkhead extends from the base of the hull to the deck, which deck is supported by the bulkhead. In an embodiment the bulkhead comprises a first and a second bulkhead defining a passageway therebetween.
Abstract:
A high-pressure tank includes a container main body (10) constituted of a body (11) and dome portions (12) disposed on both ends of the body, and a reinforcing layer (20) formed such that a fiber member is wound around an outer periphery of the container main body. The reinforcing layer includes a hoop winding layer (40) formed by hoop winding that winds the fiber member such that a winding angle is approximately perpendicular to a central axis of the body, and a high helical winding layer (30) formed by high helical winding that winds the fiber member such that a winding angle is inclined with respect to the central axis compared with the hoop winding, and the high helical winding layer extends to the dome portion. The high helical winding layer includes a thick portion having a thickness at an outer side part of a boundary position between the body and the dome portion, which thickness is thicker than a thickness at a part positioned on the body. The hoop winding layer is formed from the body to the dome portion where the thick portion is formed, as a layer at an outer diameter side of the high helical winding layer.