摘要:
The invention provides methods and kits for ordering sequence information derived from one or more target polynucleotides. In one aspect, one or more tiers or levels of fragmentation and aliquoting are generated, after which sequence information is obtained from fragments in a final level or tier. Each fragment in such final tier is from a particular aliquot, which, in turn, is from a particular aliquot of a prior tier, and so on. For every fragment of an aliquot in the final tier, the aliquots from which it was derived at every prior tier is known, or can be discerned. Thus, identical sequences from overlapping fragments from different aliquots can be distinguished and grouped as being derived from the same or different fragments from prior tiers. When the fragments in the final tier are sequenced, overlapping sequence regions of fragments in different aliquots are used to register the fragments so that non-overlapping regions are ordered. In one aspect, this process is carried out in a hierarchical fashion until the one or more target polynucleotides are characterized, e.g. by their nucleic acid sequences, or by an ordering of sequence segments, or by an ordering of single nucleotide polymorphisms (SNPs), or the like.
摘要:
An imaging system is provided wherein a positioning stage is translated with respect to an objective lens component and a scan mirror is repositioned while a two-dimensional image is made of a biochemical site on a substrate. In an example embodiment, an imaging system comprises a camera, an objective lens component, a positioning stage, and a scan mirror controllable by a servo system that synchronizes movement of the positioning stage and the tilting of the scan mirror so that the substrate image is maintained stable during imaging of the continuously moving positioning stage.
摘要:
An imaging system is provided wherein a positioning stage is translated with respect to an objective lens component and a scan mirror is repositioned while a two-dimensional image is made of a biochemical site on a substrate. In an example embodiment, an imaging system comprises a camera, an objective lens component, a positioning stage, and a scan mirror controllable by a servo system that synchronizes movement of the positioning stage and the tilting of the scan mirror so that the substrate image is maintained stable during imaging of the continuously moving positioning stage.
摘要:
Methods for interpreting absolute copy number of complex tumors and for determining the copy number of a genomic region at a detection position of a target sequence in a sample are disclosed. In certain aspects, genomic regions of a target sequence in a sample are sequenced and measurement data for sequence coverage is obtained. Sequence coverage bias is corrected and may be normalized against a baseline sample. Hidden Markov Model (HMM) segmentation, scoring, and output are performed, and in some embodiments population-based no-calling and identification of low-confidence regions may also be performed. A total copy number value and region-specific copy number value for a plurality of regions are then estimated.
摘要:
Embodiments for calling variations in a sample polynucleotide sequence compared to a reference polynucleotide sequence are provided. Aspects of the embodiments include executing an application on at least one computer that locates local areas in the reference polynucleotide sequence where a likelihood exists that one or more bases of the sample polynucleotide sequence are changed from corresponding bases in the reference polynucleotide sequence, where the likelihood is determined at least in part based on mapped mated reads of the sample polynucleotide sequence; generating at least one sequence hypothesis for each of the local areas, and optimizing the at least one sequence hypothesis for at least a portion of the local areas to find one or more optimized sequence hypotheses of high probability for the local areas; and analyzing the optimized sequence hypotheses to identify a series of variation calls in the sample polynucleotide sequence.
摘要:
Embodiments for calling variations in a sample polynucleotide sequence compared to a reference polynucleotide sequence are provided. Aspects of the embodiments include executing an application on at least one computer that locates local areas in the reference polynucleotide sequence where a likelihood exists that one or more bases of the sample polynucleotide sequence are changed from corresponding bases in the reference polynucleotide sequence, where the likelihood is determined at least in part based on mapped mated reads of the sample polynucleotide sequence; generating at least one sequence hypothesis for each of the local areas, and optimizing the at least one sequence hypothesis for at least a portion of the local areas to find one or more optimized sequence hypotheses of high probability for the local areas; and analyzing the optimized sequence hypotheses to identify a series of variation calls in the sample polynucleotide sequence.
摘要:
A scalable reaction and detection system for automated high throughput sequencing of nucleic acids involving a combination of chemical processes and observation processes independent of the chemistry processes. Discrete functional units may be configured in a manner that allows the system to interchangeably utilize different sequencing reaction components in conjunction with discrete apparatus components for optical image collection and/or analysis.