Abstract:
A biofabricated material containing a network of crosslinked collagen fibrils is disclosed. This material is composed of collagen which is also a major component of natural leather and is produced by a process of fibrillation of collagen molecules into fibrils, crosslinking the fibrils and lubricating the crosslinked fibrils. Unlike natural leathers, this biofabricated material exhibits non-anisotropic (not directionally dependent) physical properties, for example, a sheet of biofabricated material can have substantially the same elasticity or tensile strength when stretched or stressed in different directions. Unlike natural leather, it has a uniform texture that facilitates uniform uptake of dyes and coatings. Aesthetically, it produces a uniform and consistent grain for ease of manufacturability. It can have substantially identical grain, texture and other aesthetic properties on both sides distinct from natural leather where the grain increases from one side ( e.g ., distal surface) to the other (proximal inner layers).
Abstract:
Described herein is a method for producing a biofabricated material from collagen or collagen-like proteins. The collagen or collagen-like proteins are isolated from animal sources or produced by recombinant DNA techniques or by chemical synthesis. The collagen or collagen-like proteins are fibrillated, crosslinked, dehydrated and lubricated thus forming the biofabricated material having a substantially uniform network of collagen fibrils.
Abstract:
Coated Fibrous Substrates The present invention provides a method of improving the adhesion of coatings to fibrous base materials. The method comprises treating a fibrous base material with one or more salt(s) of receptor species to provide a pre-coated fibrous base material comprising specific inorganic receptor sites within the fibrous base material. The one or more salt(s) of receptor species is selected from the groups comprising: (a) aluminium salts; (b) titanium salts; (c) zirconium salts; (d) iron salts; (e) soluble alkali silicates; or a combination thereof. The method further comprises coating the treated fibrous base material with a coating formulation comprising one or more compound(s) containing epoxy and alkoxysilane groups. The coating formulation acts as an adhesion promoter and cross-linker.