摘要:
An electron-emitting device contains an emitter resistor layer (125) patterned into multiple laterally separated sections situated between the electron-emissive elements (155), on one hand, and emitter electrodes (120), on the other hand. Sections of the seed layer (130) are spaced apart along each emitter electrode (120) to electrically decouple electron emission elements (155) disposed on the resistor layer (125).
摘要:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a post-treatment step is performed on the newly formed nanotube structures. The post-treatment removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The post-treatment is performed with the plasma at the same substrate temperature. For the post-treatment, the hydrogen containing gas is used as a plasma source gas. During the transition from the nanotube growth stop to the post treatment step, the pressure in the plasma process chamber is stabilized with the aforementioned purifying gas without shutting off the plasma in the chamber. This eliminates the need to purge and evacuate the plasma process chamber.
摘要:
Carbon nanotubes are formed on a surface of a substrate using a plasma chemical deposition process. After the nanotubes have been grown, a purification step is performed on the newly formed nanotube structures. The purification removes graphite and other carbon particles from the walls of the grown nanotubes and controls the thickness of the nanotube layer. The purification is performed with the plasma at the same substrate temperature. For the purification, the hydrogen containing gas added as an additive to the source gas for the plasma chemical deposition is used as the plasma source gas. Because the source gas for the purification plasma is added as an additive to the source gas for the chemical plasma deposition, the grown carbon nanotubes are purified by reacting with the continuous plasma which is sustained in the plasma process chamber. This eliminates the need to purge and evacuate the plasma process chamber as well as to stabilize the pressure with the purification plasma source gas. Accordingly, the growth and the purification may be performed without shutting off the plasma in the plasma process chamber.
摘要:
A flat panel display and a method for forming a carbon nanotube based flat panel display. In one embodiment, the flat panel display includes a barrier layer formed between a catalyst layer upon which microstructures of carbon nanotubes are formed and a resistor layer. The barrier layer acts as an anti diffusion layer between the catalysts layer and the resistor layer to prevent the catalyst layer from diffusing into the resistor layer during the growing of the carbon nanotubes. The barrier layer also enhances the adhesion characteristics of the catalyst layers to enable the uniform growth of the carbon nanotube structures on the catalyst layer.
摘要:
An electron-emitting device contains an emitter seed layer (120) patterned into multiple laterally separated sections situated between the electron-emissive elements (140), on one hand, and emitter electrodes (110), on the other hand. Sections of the seed layer are spaced apart along each emitter electrode (110) to electrically decouple electron emission elements disposed on the seed layer (120).
摘要:
An electron-emitting device including a protective layer that is formed on a catalyst layer to protect the catalyst layer from the deleterious environmental conditions before or during a cathode process. The present invention further includes a half etching process that is adapted to partially remove portions of the protective layer from the catalyst layer to etch the catalyst layer except carbon nano-tube growing portions. Portions of the protective layer still remain on the catalyst layer to protect the catalyst layer from the deleterious conditions from next cathode formation process.