Abstract:
Articulation devices, systems, methods for articulation, and methods for fabricating articulation structures will often include simple balloon arrays, with inflation of the balloons interacting with elongate skeletal support structures so as to locally alter articulation of the skeleton. The balloons can be mounted to a substrate of the array, with the substrate having channels that can direct inflation fluid to a subset of the balloons. The articulation array structure may be formed using simple planar 3-D printing, extrusion, and/or micromachining techniques. The skeleton may comprise a simple helical coil, and the array can be used to locally deflect or elongate an axis of the coil under control of a processor. Inflation fluid may be directed to the balloons from an inflation fluid reservoir of an inflation system, with the inflation system preferably including valves controlled by the processor. The articulation structures can be employed in minimally invasive medical catheter systems, and also for industrial robotics, for supporting imaging systems, for entertainment and consumer products, and the like.
Abstract:
User interface devices, systems, and methods can be used for selectively bending of, altering the bend characteristics of, and/or altering the lengths of catheter bodies, guidewires, steerable trocars, and other flexible structures inserted into a patient during use. Optionally, a housing is coupled to a proximal end of a catheter, and movement of the housing by a hand of a system user is sensed and used as a movement command for articulation of the catheter. Alternatively, a sensor can be coupled to an elongate flexible body flexing outside of the patient so as to alter bending of a catheter within the patient. Movements generated through a combination of manual manipulation and powered articulations are facilitated.