摘要:
A method of computing a hologram by determining the wavefronts at the approximate observer eye (OE) position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window (OW) that would be generated by a real object located at the same position of the reconstructed object (3D-S). One can then back-transform these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram (HA) can then generate a reconstruction of the three-dimensional scene (3D-S) that can be observed by placing one's eyes at the plane (OP) of the observer window (OW) and looking through the observer window (OW).
摘要:
Die Erfindung betrifft eine Einrichtung zur Rekonstruktion einer dreidimensionalen Szene mit einem optischen System, enthaltend mindestens eine reelle oder virtuelle punkt- oder linienförmige, hinreichend kohärente Lichtquelle (1) und eine Linse (2), sowie mit einem steuerbaren Display (3) aus matrixförmig oder in anderer Weise regulär angeordneten Zellen mit mindestens einer in Amplitude und/oder Phase steuerbaren Öffnung je Zelle. In das steuerbare Display (3) ist ein Videohologramm kodierbar. Die Linse (2) erzeugt ein Bild der Lichtquelle (1) in einer Betrachterebene (4). In der Betrachterebene (4) ist ein Betrachterfenster (5) innerhalb einer Beugungsordnung des steuerbaren Displays (3) lokalisierbar. Durch das Betrachterfenster (5) hindurch ist die dreidimensionale Szene (6) betrachtbar, wenn ein Auge eines Betrachters an dem Betrachterfenster (5) positioniert ist. Das Videohologramm enthält ein Gebiet mit Information, die benötigt wird, um einen einzelnen Punkt (7) in der dreidimensionalen Szene (6) zu rekonstruieren, der vom Betrachterfenster (5) aus sichtbar ist. In dem Gebiet ist Information für diesen einzelnen Punkt (7) in der rekonstruierten dreidimensionalen Szene (6) kodierbar. Dieses Gebiet ist das einzige Gebiet im Videohologramm, das mit Information für diesen Punkt (7) kodierbar ist. Dieses Gebiet ist in der Größe so begrenzt, dass es einen Teil des gesamten Videohologramms bildet, wobei die Größe so bemessen ist, dass keine durch höhere Beugungsordnungen verursachten mehrfachen Rekonstruktionen dieses Punktes (7) vom Betrachterfenster (5) aus zu sehen sind.
摘要:
The invention relates to autostereoscopic displays consisting of a flat display for representing both stereo images, an image separating mask comprising vertical periodical structures for channelling the left and the right stereo images onto the left and the right eye of a viewer, and a device for horizontally displacing the image separating mask according to the position of the viewer. The inventive displays are characterised in that the horizontal adjustment of the image separating mask which is divided into pixels and subpixels is limited to a region of a periodicity length of the image separating mask, when the viewer moves in a lateral manner. When the interval threshold is reached, the image separating mask is set back by one periodicity interval. The necessary displacement length of the image separating mask is thus considerably reduced. The mechanical element for the horizontal displacement of the image separating mask is simplified and can simultaneously be embodied in a more robust manner. The small regulating distance thus obtained enables the image separating mask to be adjusted even when the viewer moves quickly.
摘要:
The invention relates to flat displays comprising a frontal mask for the spatial, stereoscopic and/or holographic representation of information. The invention is characterised in that the quality of the spatial, stereoscopic or holographic representations in known flat displays comprising a rough surface is significantly improved by smoothing the surface. To this end, the surface of the flat display which reduces reflection by means of its roughness is provided with a submerging and/or transparent layer, or a transparent or submerging material is situated between the surface and the mask. In the latter case, the material is enclosed in an air-tight body or the region between the flat display and the mask is sealed and contains the transparent or submerging material. A further considerable advantage is that the submerging and/or transparent layer on the surface of the flat display simultaneously protects against mechanical and/or heat and/or meteorological influences. Said layer can also be used to reduce reflection.
摘要:
Die Erfindung betrifft Videohologramme und Einrichtungen zur Rekonstruktion von Videohologrammen mit einem optischen System, bestehend aus Lichtquelle (1), Linse (2) und dem Videohologramm (3) aus matrixförmig oder regulär angeordneten Zellen mit mindestens einer in Amplitude und/oder Phase steuerbaren Öffnung je Zelle. Die Videohologramme und Einrichtungen zur Rekonstruktion derselben zeichnen sich dadurch aus, dass holografische Videodarstellungen ausgedehnter räumlicher Objekte (6) in einem weiten Betrachterbereich mittels steuerbarer Displays in Echtzeit realisierbar sind, wobei die Objekte entweder computergeneriert oder auf andere Weise erzeugt werden. Das Space-Bandwith-Produkt (SBP) des Hologramms wird dabei auf ein Minimum reduziert, indem das Periodizitätsintervall des Fourierspektrums in der Rücktransformationsebene als Betrachterfenster (5) genutzt wird, durch welches das Objekt im davorliegenden Raum sichtbar wird. Die Beweglichkeit des/der Betrachter wird durch Nachführen des Betrachterfensters erreicht. Vorteilhafte Anwendungen bieten sich im Fernseh-, Multimedia-, Spiele- und Konstruktionsbereich, in der Militär- und Medizintechnik sowie in anderen Bereichen von Wirtschaft und Gesellschaft.
摘要:
A method of computing a hologram by determining the wavefronts at the approximate observer eye (OE) position that would be generated by a real version of an object to be reconstructed. In normal computer generated holograms, one determines the wavefronts needed to reconstruct an object; this is not done directly in the present invention. Instead, one determines the wavefronts at an observer window (OW) that would be generated by a real object located at the same position of the reconstructed object (3D-S). One can then back-transform these wavefronts to the hologram to determine how the hologram needs to be encoded to generate these wavefronts. A suitably encoded hologram (HA) can then generate a reconstruction of the three-dimensional scene (3D-S) that can be observed by placing one's eyes at the plane (OP) of the observer window (OW) and looking through the observer window (OW).
摘要:
The invention relates to a method and device for tracking the sweet spots of a sweet spot unit for a transmissive electronic display. The aim of the invention is to improve the reproduction quality and the uniformity of illumination in displays of this type. The display contains a sweet spot unit consisting of an illumination matrix (1) and reproduction elements, in addition to an image matrix (4). Once the position of at least one observer's eye (6) has been determined by a control unit using inverse ray tracing, address data for activating illumination elements (LE) of the illumination matrix (1) is provided from the position data in order to prepare the defined sweet spots (5) for said observer's eye (6). To improve the reproduction quality, an additional optical component is used in the ray path for the inverse ray tracing process. In addition to the viewing angle (a) of the observer, the control unit detects and takes into consideration a defined angle (?) of a scattering or diffractive element in a predetermined angular range. This permits additional address data to be activated for the illumination elements (LE) and the defined sweet spot (5) can be illuminated in a uniform manner.
摘要:
The invention relates to an optical imaging system for separating images, more specifically a sweet spot beam splitter, for an autostereoscopic display, which allows for greater freedom of movement of at least one observer in a lateral direction as well as regarding the distance from the display by expanding sweet spots up to and beyond the size corresponding to the distance between the eyes. The observer can move within said area without losing the 3D impression such that the demands on the positional accuracy and the reaction time of the tracking system are lowered. The inventive sweet spot beam splitter comprises a first lenticular system (L1) and a second lenticular system(L2), the strip-shaped lenses of which are disposed parallel to each other while being offset by half a lens width in a vertical direction relative to the columns of the image matrix (M). The distance therebetween preferably corresponds to the focal length of the second lenticular system (L2). The information-carrying columns of the image matrix (M) are reproduced at twice the width onto the strip lenses of the second lenticular system (L2) by means of the first lenticular system (L1). The invention allows the user-friendliness of autostereoscopic displays to be substantially improved in many applications.
摘要:
The invention relates to a dimensionally-stable flat lens system and to a method for the production thereof. The flat lens system has a controllable optical flat element or an optical mask (LM) on one side of a carrier-substrate plate (TP). High requirements vis-a-vis dimensional stability are made of flat lens systems in order to obtain high-quality optical imaging, particularly in autostereoscopic displays; the flat lens system loses the required formal precision as a result of warpage or bending, whereupon high quality optical imaging is no longer achievable. The aim of the invention is to compensate the resulting material stresses, which result in warpage or bending of a flat lens system, by means of a compensating element (LX). According to the invention, the flat lens system has a flat compensating element which is connected to the carrier-substrate plate (TP), sitting firmly thereon, on the rear side of the carrier-substrate plate (TP).