摘要:
A composite article comprises a substrate, base polymer layer, an inorganic barrier layer, and top polymer layer. The base polymer layer is disposed on the substrate, and includes a polymerized reaction product of components comprising at least 60 percent by weight of at least one di(meth)acrylate represented by the formula wherein: each R1 is independently H or methyl; and each R2 independently represents an alkyl group having from 1 to 4 carbon atoms, or two R2 groups may together form an alkylene group having from 2 to 7 carbon atoms. An inorganic barrier layer is bonded to the base polymer layer. The top polymer layer is disposed on the inorganic barrier layer opposite the substrate, wherein the top polymer layer comprises a polymerized reaction product of components comprising at least 60 percent by weight of a cycloaliphatic (meth)acrylate having from 13 to 24 carbon atoms.
摘要:
The present disclosure relates to sterically hindered alkyl amine and sterically hindered oxyalkyl amine compounds, as well as particles, substrates, coatings, and articles including the same.
摘要:
Urethane (multi)-(meth)acrylate (multi)-silane compositions, and articles including a (co)polymer reaction product of at least one urethane (multi)-(meth)acrylate (multi)-silane precursor compound. The disclosure also articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urethane (multi) (meth)acrylate (multi)-silane precursor compound. The substrate may be a (co)polymeric film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making urethane (multi)-(meth)acrylate (multi)-silane precursor compounds and their use in composite multilayer barrier films are also described. Methods of using such barrier films in articles selected from a solid state lighting device, a display device, and combinations thereof, are also described
摘要:
A composite article includes a multilayer barrier assembly bonded to a substrate, and a top polymer layer bonded to the multilayer barrier assembly opposite the substrate. The multilayer barrier assembly comprises a base polymer layer and a base inorganic barrier layer. The base polymer layer comprises a polymerized reaction product of polymerizable components comprising at least one di(meth)acrylate represented by the formula: Formula (I) Each R1 independently represents H or methyl; each R2 independently represents an alkyl group having from 1 to 4 carbon atoms; x = 0, 1, 2, 3, or 4; and z = 0, 1, 2, 3, or 4, with the provisos that at least one of x and z is not zero and 1 ≤ x + z ≤ 4. Methods of making the same are also disclosed.
摘要:
Urea (multi)-(meth)acrylate (multi)-silane precursor compounds, synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds, either neat or in a solvent, and optionally with a catalyst, such as a tin compound, to accelerate the reaction. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one urea (multi) (meth)acrylate (multi)-silane precursor compound synthesized by reaction of (meth)acrylated materials having isocyanate functionality with aminosilane compounds. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the urea (multi)-(meth)acrylate (multi)-silanes and their use in composite films and electronic devices are described.
摘要:
Diurethane (meth)acrylate-silane precursor compounds prepared by reacting a primary or secondary aminosilane with a cyclic carbonate to yield a hydroxylalkylene-carbamoylalkylene-alkoxysilanes (referred to as a "hydroxylcarbamoylsilane"), which is reacted with a (meth)acrylated material having isocyanate functionality, either neat or in solvent, and optionally with a catalyst, such as a tin compound. Also described are articles including a substrate, a base (co)polymer layer on a major surface of the substrate, an oxide layer on the base (co)polymer layer; and a protective (co)polymer layer on the oxide layer, the protective (co)polymer layer including the reaction product of at least one diurethane (meth)acrylate-silane precursor compound. The substrate may be a (co)polymer film or an electronic device such as an organic light emitting device, electrophoretic light emitting device, liquid crystal display, thin film transistor, or combination thereof. Methods of making the diurethane (meth)acrylate-silane and their use in composite films and electronic devices are described.
摘要:
A barrier film including a substrate, a base (co)polymer layer applied on a major surface of the substrate, an oxide layer applied on the base (co)polymer layer, and a protective (co)polymer layer applied on the oxide layer. The protective (co)polymer layer is formed as the reaction product of a first (meth)acryloyl compound and a (meth)acryl-silane compound derived from a Michael reaction between a second (meth)acryloyl compound and an aminosilane. The first and second (meth)acryloyl compounds may be the same. In some embodiments, a multiplicity of alternating layers of the oxide layer and the protective (co)polymer layer may be used. An oxide layer can be applied over the top protective (co)polymer layer. The barrier films provide, in some embodiments, enhanced resistance to moisture and improved peel strength adhesion of the protective (co)polymer layer(s) to the underlying layers. A process of making, and methods of using the barrier film are also described.