摘要:
A voltage-mode differential driver (105) is disclosed. The differential driver (105) includes two driver arms (110-P, 110-N), each driver arm (110-P, 110-N) including a variable-impedance driver (116) for driving a single-ended output signal. Each variable-impedance driver (116) comprises multiple driver slices, where each driver slice includes a pre-driver circuit and a driver circuit. Advantageously, it has been determined that the disclosed voltage-mode driver design requires less power than conventional current-mode drivers. In one implementation, the disclosed voltage-mode driver design provides the capability of independently programming the delay of the two single-ended outputs so as to compensate for differential skew. Other embodiments and features are also disclosed.
摘要:
Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
摘要:
Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
摘要:
Methods and apparatus for providing either high-speed, or lower-speed, flexible inputs and outputs. An input and output structure having a high-speed input, a high-speed output, a low or moderate speed input, and an low or moderate speed output is provided. One of the input and output circuits are selected and the others are deselected. The high-speed input and output circuits are comparatively simple, in one example having only a clear signal for a control line input, and are able to interface to lower speed circuitry inside the core of an integrated circuit. The low or moderate speed input and output circuits are more flexible, for example, having preset, enable, and clear as control line inputs, and are able to support JTAG boundary testing. These parallel high and lower speed circuits are user selectable such that the input output structure is optimized between speed and functionality depending on the requirements of the application.
摘要:
An LVDS interface for a programmable logic device uses phase-locked loop ("PLL") circuits to provide data clocks for data input and output. The PLL clocks are highly accurate and each includes a multiply-by-W counter so that a multiplied and an unmultiplied clock are available. The multiplied clock is used to clock data into or out of a shift register chain serially. The unmultiplied clock is used to load or read the registers in the shift register chain in parallel. Providing both the multiplied and unmultiplied clocks from a single PLL assures that the clocks are in proper phase relationship so that the serial inputting or outputting, and the parallel loading or unloading, are properly synchronized.
摘要:
A voltage-mode differential driver (105) is disclosed. The differential driver (105) includes two driver arms (110-P, 110-N), each driver arm (110-P, 110-N) including a variable-impedance driver (116) for driving a single-ended output signal. Each variable-impedance driver (116) comprises multiple driver slices, where each driver slice includes a pre-driver circuit and a driver circuit. Advantageously, it has been determined that the disclosed voltage-mode driver design requires less power than conventional current-mode drivers. In one implementation, the disclosed voltage-mode driver design provides the capability of independently programming the delay of the two single-ended outputs so as to compensate for differential skew. Other embodiments and features are also disclosed.
摘要:
An LVDS interface for a programmable logic device uses phase-locked loop ("PLL") circuits to provide data clocks for data input and output. The PLL clocks are highly accurate and each includes a multiply-by-W counter so that a multiplied and an unmultiplied clock are available. The multiplied clock is used to clock data into or out of a shift register chain serially. The unmultiplied clock is used to load or read the registers in the shift register chain in parallel. Providing both the multiplied and unmultiplied clocks from a single PLL assures that the clocks are in proper phase relationship so that the serial inputting or outputting, and the parallel loading or unloading, are properly synchronized.