Abstract:
According to some embodiments there is provided a sound and detection system comprising at least a digital sound reconstruction speaker apparatus, comprising a plurality of pressure-pulse producing elements, and at least a controlling unit configured to control the actuation of the plurality of pressure-pulse producing elements, so as to produce at least an ultrasonic beam directed towards space during at least a first time interval, for the calculation of at least the position of at least part of an object present in space based on the sensing of at least ultrasonic sound waves reflected by said part of the object, and control the actuation of the plurality of pressure-pulse producing elements, so as to produce audible content during at least a second time interval. Various other systems, methods and applications are described.
Abstract:
A system that includes a direct digital speaker volume control device configured to be coupled to a direct digital speaker. The direct digital speaker include many pressure producing elements being adapted to generate a sound at a sound pressure level (SPL) and at a given frequency in response to an input signal, without using digital to analog converter. The direct digital speaker inherently exhibits a frequency response throughout its entire frequency range. The direct digital speaker volume control device includes a module for providing few filters each having a distinct cutoff frequency such that each filter exhibits no attenuation below its cutoff frequency and an attenuation response above the filter's cutoff frequency. And a selector for selecting one of the filters according to a selection criterion that depends on a desired volume and frequency of generated sound, and applying the filter to the input signal for generating a filtered signal that fed to the speaker.
Abstract:
Actuator apparatus comprising at least one moving elements, each comprising comb drive apparatus including at least first and second comb elements at least one of which is free to be in motion in a medium, and a controller controlling the motion responsive to an input signal representing a desired sound.
Abstract:
An actuation system for generating a physical effect, the system comprising at least one array of translating elements each constrained to travel alternately back and forth along a respective axis, toward first and second extreme positions respectively, in response to activation of first and second forces respectively; and a controller operative to use the first and second forces to selectably latch at least one subset of said translating elements into the first and second extreme positions respectively.
Abstract:
A system that includes a direct digital speaker volume control device configured to be coupled to a direct digital speaker. The direct digital speaker include many pressure producing elements being adapted to generate a sound at a sound pressure level (SPL) and at a given frequency in response to an input signal, without using digital to analog converter. The direct digital speaker inherently exhibits a frequency response throughout its entire frequency range. The direct digital speaker volume control device includes a module for providing few filters each having a distinct cutoff frequency such that each filter exhibits no attenuation below its cutoff frequency and an attenuation response above the filter's cutoff frequency. And a selector for selecting one of the filters according to a selection criterion that depends on a desired volume and frequency of generated sound, and applying the filter to the input signal for generating a filtered signal that fed to the speaker.
Abstract:
Actuator apparatus for generating a physical effect, at least one attribute of which corresponds to at least one characteristic of a digital input signal sampled periodically in accordance with a clock, the apparatus comprising at least one array of moving elements each constrained to travel alternately back and forth along a respective axis in response to an alternating electromagnetic force applied to the array of moving elements, at least one latch operative to selectively latch at least one subset of said moving elements in at least one latching position thereby to prevent the individual moving elements from responding to the electromagnetic force, an electromagnetic field control system operative to receive the clock and, accordingly, to control application of the electromagnetic force to the array of moving elements, and a latch controller operative to receive the digital input signal and to control the latch accordingly.
Abstract:
Apparatus for generating a target physical effect, at least one attribute of which corresponds to at least one characteristic of a digital input signal sampled periodically, the apparatus comprising a multiplicity of electrostatic actuator elements, each comprising a moving element moving between first and second electrodes, the multiplicity of electrostatic actuator elements including Nr first subsets (R-subsets) of actuator elements and Nc second subsets (C-subsets) of actuator elements, wherein a first partitioning of the multiplicity of actuator elements yields the Nr first subsets (R-subsets) and a second partitioning of the multiplicity of actuator elements yields the Nc second subsets (C-subsets); a first plurality of Nr electrical connections (R-wires) interconnecting the moving elements of actuator elements in each R-subset, such that the moving element of any actuator element in each individual R-subset is electrically connected to the moving elements of all other actuator elements in the individual R- subset, and electrically isolated from the moving elements of all actuator elements not in the individual R-subset; a second plurality of Nc electrical connections (A-wires) interconnecting the first electrodes of actuator elements in each C-subset, such that the first electrode of any actuator element in each individual C-subset is electrically connected to the first electrode of all other actuator elements in the individual C-subset, and electrically isolated from all actuator elements not in the individual C-subset; a third plurality of Nc electrical connections (B-wires) interconnecting the second electrodes of actuator elements in each C-subset, such that the second electrode of any actuator element in each individual C-subset is electrically connected to the second electrode of all other actuator elements in the individual C-subset, and electrically isolated from all actuator elements not in the individual C-subset; and a controller electrically connected to the first, second and third pluralities of electrical connections, operative to receive a digital input signal, and to apply one of a predetermined, finite set of electric potentials to each of said electrical connections respectively, such that resulting movements of the moving elements together produce the desired physical effect.